
International Conference on Industrial Engineering & Industrial Management - International Conference on Industrial Engineering & Industrial Management - CIO 2007 1663

Sequencing in a Non-permutation Flowshop with Constrained Buffers: 
Applicability of Genetic Algorithm versus Constraint Logic Programming*

Gerrit Färber1, Said Salhi2, Anna M. Coves Moreno1

1 Institut d’Organització i Control de Sistemes Industrials (IOC), Universitat Politècnica de Catalunya (UPC), 
Av. Diagonal 647, Planta 11, 08028 Barcelona, España. gerrit_faerber@gmx.de, anna.maria.coves@upc.es
2 The Centre for Heuristic Optimisation (CHO), Kent Business School (KBS), University of Kent, Canterbury, 
Kent CT2 7PE, UK, s.salhi@kent.ac.uk

Abstract

Mixed model production lines consider more than one model being processed on the same production 
line in an arbitrary sequence. Nevertheless, the majority of publications in this area are limited to 
solutions which determine the job sequence before the jobs enter the line and maintains it without 
interchanging jobs until the end of the production line, which is known as permutation fl owshop. This 
paper considers a non-permutation fl owshop. Resequencing is permitted where stations have access 
to intermediate or centralized resequencing buffers. The access to the buffers is restricted by the 
number of available buffer places and the physical size of the products. Two conceptually different 
approaches are presented in order to solve the problem. The fi rst approach is a hybrid approach, 
using Constraint Logic Programming (CLP), whereas the second one is a Genetic Algorithm (GA). 
Improvements that come with the introduction of constrained resequencing buffers are highlighted. 
Characteristics such as the difference between the intermediate and the centralized case are analyzed, 
and the special case of semi dynamic demand is studied. Finally, recommendations are presented for 
the applicability of the hybrid approach, using CLP, versus the Genetic Algorithm.

Keywords: Non-permutation fl owshop; Constrained buffers; Mixed model assembly line 
Genetic Algorithm; Constraint Logic Programming.

1. Introduction 

This paper is located in the area of mixed model non-permutation fl owshop production lines 
where jobs of more than one model are being processed on the same production line in an 
arbitrary sequence. Unlike the majority of publications in this area, Potts et al. (1991), and 
Liao et al. (2006) study the improvements when the possibility of resequencing jobs between 
selected stations is regarded; the considerable improvements are even more evident when setup 
cost/time exists. The case of infi nite buffers is basically a theoretical case in which no limitation 
exists with respect to the number of jobs that may be buffered between two stations. Roy (1962), 
presents a graph-theoretical interpretation which allows the calculation of the makespan of a 
sequence in the fl owshop that is not a permutation sequence. Surveys on heuristics treating 
the case of infi nite buffers are presented by Liesegang and Schirmer (1975), and Park et al. 
(1984).

As explained by Pinedo (1995), mathematically a buffer can be realized as a station with 
zero processing time. Approaches which consider a limited number of buffer places for the 
fl owshop problem are studied by Dutta and Cunningham (1975), Reddi (1976), Papadimitriou 
and Kanellakis (1980), Nowicki (1999), Smutnicki (1998), and Leisten (1990). Mascic and 
Pacciarelli (2002) consider limited resequencing possibilities for jobshop problems, also studied 
by Brucker et al. (2006). Previous to these studies, the same research group, Brucker et al. 
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(2003), presented a Tabu search for a fl owshop with a buffer positioned between all consecutive 
stations. The number of buffer places is the same for all resequencing buffers and the variable 
parameter is the number of buffer places which is 0, 1, 2, or infi nite. The authors use the test-bed 
from Taillard (1993), which was originally designed for permutation fl owshop problems, and 
present next to their solutions the optimal solutions from other authors, and if not available, the 
so far best lower bounds and the best known solutions.

The introduction of resequencing possibilities generally leads to additional costs, caused by 
additional equipment to be mounted, like buffers, but also extra efforts in terms of logistics 
complexity may arise. The problem in NP-hard and as highlighted by Lahmar et al. (2003), 
only few resequencing possibilities are necessary in order to achieve the greatest benefi ts. In the 
case in which there exist jobs with large and small physical size, the investment for additional 
resequencing equipment can be reduced by, e.g., only giving small jobs the possibility to 
resequence. Consequently, only small resequencing buffer places are installed. Following this 
concept, in a chemical production line with client orders of different volumes, only resequencing 
tanks that permit client orders of relatively small volume to be resequenced. The work of Witt 
(2005), considers that different jobs have different physical sizes and occupy only a portion of the 
continuous intermediate resequencing buffer which is used for decoupling and resequencing.

Figure 1. Scheme of the considered fl owshop. The jobs JjJjJ  pass consecutively through the stations IiIiI . The 
buffer Bi permits to temporally store a job with the objective of reinserting it at a later position in the sequence. 

j
 permits to temporally store a job with the objective of reinserting it at a later position in the sequence. 
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 permits to temporally store a job with the objective of reinserting it at a later position in the sequence. 
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a) Job J2J2J  can pass through any of the two buffer places Bi,1 or Bi,2 of buffer Bi. b) Job J3J3J  can pass only through 
buffer place Bi,2, due to its physical size.

i,1
, due to its physical size.

i,1 i,2
, due to its physical size.
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This paper considers a mixed model non-permutation fl owshop with the possibility to resequence 
jobs between consecutive stations. The buffers are located off-line, either accessible from a 
single station (intermediate case) or from various stations (centralized case). In both cases, it is 
considered that a job may not be able to be stored in a buffer place, due to its extended physical 
size, see fi gure 1. The primary objective is the minimization of the makespan, but also setup-
cost and setup-time is contemplated. In what follows the problem is formulated with more 
detail and two heuristic approaches are described. Thereafter, the accomplished performance 
comparison is presented, followed by the conclusions. 

2. Problem under Study

The realized work is based on the classical fl owshop in which the jobs (JThe realized work is based on the classical fl owshop in which the jobs (JThe realized work is based on the classical fl owshop in which the jobs ( 1J1J , J2J2J , …, JjJjJ , …, Jn) pass 
consecutively through the stations (Iconsecutively through the stations (Iconsecutively through the stations ( 1I1I , I2I2I , …, IiIiI , …, Im). Furthermore, after determined stations, 
off-line buffers Bi permit to resequence jobs. The buffer provides various buffer places (B permit to resequence jobs. The buffer provides various buffer places (B permit to resequence jobs. The buffer provides various buffer places ( i,1, Bi,2, 
…) and each buffer place is restricted by the physical size of the jobs to be stored. As can be seen 
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in fi gure 1a, job J2J2J  can be stored in buffer place Bi,1 as well as in Bi,2. Whereas, the next job J3J3J  can 
be stored only in buffer place Bi,2, because of the physical size of the job exceeding the physical 
size of the buffer place Bi,1, see fi gure 1b. The objective is to minimize the makespan, the setup-
cost and the setup-time. The objective function is the weighted sum of the makespan and the 
sequence dependent setup cost, where the sequence dependent setup time is not concerned 
with a weight but is indirectly included in the calculation of the makespan. In a fi rst step, the 
resequencing buffers are located intermediate, between two consecutive stations. In this case the 
buffer is assigned to the precedent station and may be accessed only by this station. Then, for an 
additional benefi t, a single resequencing buffer is used, with access from various stations, while 
the limitations on the physical size of the buffer places are maintained. The considered problem 
is relevant to various fl owshop applications such as chemical productions dealing with client 
orders of different volumes and different sized resequencing tanks, or in productions where 
split-lots are used for engineering purpose, such as the semiconductor industry. Even in the 
production of prefabricated houses with, e.g., large and small walls passing through consecutive 
stations where electrical circuits, sewerage, doors, windows and isolation are applied.

3. Hybrid-Constraint Logic Programming (CLP)

The name CLP was fi rst introduced by Jaffar and Lassez (1987) and can be described as a 
powerful extension of conventional logic programming. It involves the incorporation of constraint 
languages and constraint solving methods into logic programming languages, see also Cohen 
(1990), Marriot and Stuckey (1998), Apt (2003) and Rossi et al. (2006). The concept of CLP 
was used for sequencing and scheduling problems by Caseau and Laburthe (1994) and Filipe 
(1997). The formulation, used here, is described in detail in Färber (2006). The formulation was 
implemented in OPL Studio version 3.7, see e.g. Hentenryck (2002) for reference on OPL. Apart 
from the job and station precedence, the CLP formulation determines the jobs which are to be 
taken off the line for the purpose of resequencing, given that a free buffer place is available. The 
CLP formulation is utilized in different arrangements. First the basic arrangement is presented 
and due to its limitations to small problems, several alternative arrangements are proposed to 
approach the problem under study. These alternative arrangements are hybrids of the exact 
approach with heuristic concepts and therefore do not ensure optimality.

3.1. Basic arrangement (A3.1. Basic arrangement (A3.1. Basic arrangement ( NP)

In this case, the non-permutation model is directly applied to the problem under study. Unless 
the time for the execution of this arrangement is restricted, it solves the problem to optimality. 
However, due to the complexity of the problem, the execution time is limited to tmax, and if the 
optimal solution is not found within this time, the best solution found up to that point is used 
for comparison. In order to study the limitation of the basic arrangement, an example of a 10-
station fl owshop was used with two intermediate resequencing buffers, accessible after station 
2 and 5, each with one resequencing buffer place. The total time for solving a four job instance 
to optimality was 4314 seconds on a Pentium 4, 3.0 GHz, 512MB RAM. On account of the 
elevated time spent on the calculation, more effi cient alternatives to the basic arrangement were 
needed.

3.2. Hybrid arrangement I: Cascading (A3.2. Hybrid arrangement I: Cascading (A3.2. Hybrid arrangement I: Cascading ( C)

In this arrangement fi rst the permutation model is applied and in a fi rst cascade the non-
permutation model. The intention of the fi rst cascade is to determine the optimum permutation 
sequence. Then, in the second step and with the use of the non-permutation model, the additional 
constraint is introduced. This additional constraint uses a semi dynamic demand with a fi xed 
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job sequence for the fi rst station to the one previously determined by the fi rst cascade. The sum 
of the maximal execution time for both cascades is set to tmax.

3.3. Hybrid arrangement II: Multistart cascading (A3.3. Hybrid arrangement II: Multistart cascading (A3.3. Hybrid arrangement II: Multistart cascading ( M, AMSS)

As indicated by its name, the multistart arrangement consists of solving the problem several 
times, where the execution time is limited to a fraction of tmax. Every time a different sequence 
is fed to the fi rst cascade (evaluation with the completely constrained permutation model) only 
its corresponding value of the objective function is determined. This operation requires a very 
small amount of time, compared to the second cascade which then determines the improvement, 
taking into account resequencing after the fi rst station. The sequence of the fi rst station is fi xed 
to the one determined by the fi rst cascade. As a consequence, and in contrast to pure cascading 
(section 3.2), the multistart arrangement is able to consider permutation sequences that are not 
optimal within the set of permutation sequences, but  which may result in a relatively better 
fi nal solution after applying the second cascade. The multistart arrangement is applied in two 
conceptional different ways.

3.3.1 Without Feedback (A3.3.1 Without Feedback (A3.3.1 Without Feedback ( M)

In this case, a certain number of randomly generated permutation sequences is evaluated with the 
completely constrained permutation model, summarized, and the most promising R sequences 
are passed to the non-permutation model pretending a semi dynamic demand with fi xed job 
sequence for the fi rst station (Π1=Πperm). The arrangement is shown in fi gure 3 with a total of 10
R randomly generated permutation sequences.

Figure 3. The CLP works in a multistart cascading mode without feedback, a total of 10 R randomly generated 
permutation sequences are used.

3.3.2 With Feedback and shift and swap operations of jobs (AMSS)

The schematic for this arrangement is shown in fi gure 4. The execution is performed in an 
iterative way, while the number of randomly generated permutation sequences is constantly 
reduced (from R to 1), whereas the information obtained by the non-permutation model is fed 
back in an increasing way (from 0 to R-1) in order to preserve valid information.
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Figure 4. The CLP works in a multistart cascading mode with feedback of the sequence which obtained the best 
solution in the second cascade.

3.4. Limited fl exibility

During the course of this work it was observed that the CLP can be positively infl uenced by the 
introduction of additional constraints such as the maximum number of positions a job can move 
upwards or downwards, say Wup and WdownWdownW , respectively.

4. Genetic Algorithm (GA)

The concept of the GA was fi rst formulated by Holland (1973) and various GAs were designed 
for mixed model assembly lines such as Potts (2003), Levitin et al. (2006) and Wang et al. 
(2006). The formulation used here is a variation of the GA explained in Michaelewicz (1996) 
and further details can be found in Färber and Coves (2006). The genes represent the jobs which 
are to be sequenced. The chromosome h, determined by a series of genes, represent a sequence 
of jobs. A generation is formed by R chromosomes and the total number of generations is G. 
In the permutation case, the size of a chromosome is determined by the number of jobs, the 
sequence Π. In the non-permutation case, the chromosomes are L+1 times larger, resulting in 
the sequences Π’1, ..., Π’L+1, L being the number of resequencing possibilities. We also call one 
sequence Π’, which includes every job exactly one time, a main fraction of a chromosome. The 
relevant information for each chromosome is its fi tness value (objective function), the number 
of job changes and the indicator specifying if the chromosome is feasible. A chromosome is 
marked infeasible and is imposed with a penalty, if a job has to be taken off the line and no 
free buffer place is available or the physical size of the job exceeds the size limitation of the 
available buffer places. When two solutions result in the same fi tness value, the one with fewer 
job changes is preferred.

4.1. Genetic operators

The genetic operators specify in which way the subsequent population is generated by 
reproduction of the present population, taking into account that “fi tter” solutions are more 
promising and therefore are more likely to reproduce. Even an unfeasible solution is able to 
reproduce, because of the fact that it may generate valuable and feasible solutions in one of the 
preceding generations. The used genetic operators are inheritance, crossover and mutation. The 
value pXpXp  is the percentage with which a genetic operator X is the percentage with which a genetic operator X X is applied to a chromosome. X is applied to a chromosome. X

4.1.1 Inheritance

This operator is determined by two parameters. The parameter pBS determines the percentage 
of the best solutions which will be copied directly to the next generation, called the cluster of 
promising chromosomes, and ensures that promising chromosomes are not extinct. Then, in 
order to avoid being trapped in a local minimum, the parameter pb is used to determine the 
percentage of chromosomes which are removed from this cluster.

4.1.2 Crossover

Crossover is a genetic operator that combines one or more chromosomes to produce a new 
chromosome. We apply the classical one-point crossover (crossover-I), see fi gures 5a, 5b, and 
the two-point crossover (crossover-II), see fi gures 5c, 5d. The probabilities with which these 
operations are applied to a chromosome are pc-I and pc-II, and the crossover points are defi ned by 
the random number pos for crossover-I, and the pair pos1 and pos2 for crossover-II, respectively. 
If the crossover point pos, pos1 and pos2 is a multiple of a main fraction, the crossover operation is 
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simple and takes place between two main fractions of the chromosome, see fi gure 5a (crossover-
I) and fi gure 5c (crossover-II), i.e. after the crossover point the chromosomes are completely 
crossed over. In the complex case, however, the crossover points are located within a main 
fraction of the chromosome and it has to be assured explicitly that each job is sequenced exactly 
one time for each main fraction, see fi gure 5b (crossover-I) and fi gure 5d (crossover-II).

Figure 5. Operators crossover-I and crossover-II. a) and c) In the simple case the crossing takes place between 
two main fractions of the chromosome. After the crossover point the chromosomes are completely crossed over. 
b) and d) In the more complex case it has to be assured that each job is sequenced exactly one time for each main 

fraction of the chromosome.

4.1.3 Mutation

Two classical mutation operators are applied. The fi rst one is the one-point mutation (mutation-
I), which relocates the job at position pos1 to position pos2 within the same main fraction of a 
chromosome. The second one is the two-point mutation (mutation-II), which interchanges the 
jobs at position pos1 and position pos2, within a main fraction. Furthermore, there exist two cases 
for mutation-I: forward mutation (posfor mutation-I: forward mutation (posfor mutation-I: forward mutation ( 1< pos2); and backward mutation (pos); and backward mutation (pos); and backward mutation ( 1> pos2). In the fi rst 
case, a single job has to be taken off the line, and in the second case, in order to let a single job 
pass; a group of succeeding jobs has to be taken off the line, resulting in a larger effort to realize. 
The probabilities of this operator are pm-I(f), pm-I(b) and pm-II.

4.2. Cascading

In order to further improve the GA, it is partitioned into two steps. In the fi rst step, the possibility 
of resequencing jobs within the production line is ignored. Furthermore, only permutation 
sequences are considered as possible solutions and the chromosome size is reduced to the 
number of jobs. The last generation, together with the best found solution, form the initial 
generation for the next cascade where the resequencing possibilities, provided by stations with 
access to resequencing buffers, are taken into account.

5. Performance Comparison

In order to evaluate the performance of the two presented approaches, GA and CLP, a fl owshop 
which consists of 10 stations is used. Station 3, 5 and 8 have access to a single intermediate 
(centralized) buffer place (L(centralized) buffer place (L(centralized) buffer place ( =3). The range of the production time is [1...100], for the setup 
cost [2...8] and for the setup time [1...5]. The number of jobs is varied in the range of 4 to 10 
and the objective function is the weighted sum of the makespan (factor 1.0) and the setup cost 
(factor 0.3), where the setup time is not concerned with a weight but is indirectly included in 
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the calculation of the makespan.

5.1. Difference in physical size of jobs

After station 3, 5 and 8 access to resequencing buffer places is made available. Also three 
differently sized buffer places are used and the ratio for the physical size of jobs is 4/10, 3/10 
and 3/10 for small (1), medium (2) and large (3), respectively. The allocation of the buffer 
places to the buffers considers fi ve scenarios for the intermediate case (“I111”, “I231”, “I132”, 
“I222”, “I333”) and three scenarios for the centralized case (“C1”, “C2”, “C3”). For instance, 
“I132” represents one small, one large and one medium buffer place, located as intermediate 
resequencing buffer places after stations 3, 5 and 8, respectively. “C2” represents one 
medium (2) buffer place, located as a centralized buffer place, accessible from station 3, 5 and 
8. “I333” and “C3” are the two cases which provide the largest fl exibility in terms of physical 
size restrictions.

Table 1. Difference in physical size of jobs for the GA.

Table 2. Comparison of the GA and the CLP for the intermediate case.

Table 3. Comparison of the GA and the CLP for the centralized case.

The results of the GA are presented in table 1. The algorithm performs best for the case “I333” 
and nearly as good in the case “C3” in all instances. It outperforms the solutions which are limited 
to permutation sequences. The comparison of the GA and the Constraint Logic Programming 
are shown in table 2 and table 3 for the intermediate and the centralized case, respectively. The 
permutation solutions found by the GA (GAP) are the same as for the permutation solutions of 
the CLP (AP), except for one case (684,3 versus 679,3). Furthermore, the GA in general achieves 
similar or slightly better results for the intermediate and the centralized case for less than 9 jobs. 
In the case of 9 and 10 jobs, better solutions are obtained by the GA. In the studied fl owshop, 
the CLP achieved an average of 0.74% and 1.09% for the intermediate and the centralized case, 
respectively. Whereas the GA achieved an average of 1.49% and 1.41% for the intermediate and 
the centralized case, respectively. The overall best results were achieved with up 4.9% for the 
CLP and 4.8% for the GA, compared to the best result achieved for permutation sequences.
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5.2. Semi-Dynamic Demand

In the case of the semi dynamic demand, the same input values are used as in the previous 
case. The only difference is that the sequence for the fi rst station is set to a fi xed sequence. For 
comparison the same sequence for the fi rst station is used for the CLP and the GA.

Table 4. Solution for the semi dynamic demand using the CLP.

Table 5. Solution for the semi dynamic demand using the GA.

Table 6. Comparison of the GA and the CLP for semi dynamic demand. The values show the relative 
improvement of the CLP with respect to the GA.

Table 4 shows the result for the CLP. In any case, when offl ine resequencing buffers are 
considered, the results are improved compared to the permutation sequence. In the studied 
fl owshop, an average of 4.3% is achieved for the use of the CLP. Whereas in the case of the 
GA, see table 5, the average is 3.7%.In the case of the Hybrid-CLP, as well as in the GA, the 
semi dynamic demand with a fi xed job sequence for the fi rst station, leads to considerable 
improvements, even for larger problem sizes. Table 6 shows the improvement of the CLP with 
respect to the GA. For only a few jobs, both methods achieve the same solutions. When 6 or 
more jobs are to be sequenced, the CLP in general outperforms the GA, especially when the 
number of buffer places at each resequencing possibility is limited to a small number.

6. Applicability

The basic arrangement ANP is very limited with respect to the problem size; whereas, the alternative NP is very limited with respect to the problem size; whereas, the alternative NP
(hybrid) approaches AC and AMSS, lead to further improvements. The consideration of limited 
fl exibility, as highlighted in section 3.4, positively infl uences the performance of the CLP. In 
the case of a semi dynamic demand, the CLP and the GA apparently show different behaviours: 
for the case of up to 10 jobs, the CLP outperforms the GA for few resequencing possibilities, 
whereas, the GA performs better when several buffer places but only few resequencing 
possibilities are considered with several buffer places. It was furthermore discovered that the 
GA is applicable for small as well as for problems with at least up to 100 Jobs. Figure 6 shows 
the summary of the applicability of the different approaches, for the case of a maximum of 3 
resequencing possibilities and with respect to the number of jobs to be processed. The number 
of stations (M) is not found to be a very limiting factor, compared to the number of jobs (M) is not found to be a very limiting factor, compared to the number of jobs (M N) is not found to be a very limiting factor, compared to the number of jobs (N) is not found to be a very limiting factor, compared to the number of jobs ( ) and N) and N
the number of resequencing possibilities (Lthe number of resequencing possibilities (Lthe number of resequencing possibilities ( ).
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Figure 6. Applicability of the pure CLP and the hybrid CLP versus Genetic Algorithm.

7. Conclusions

This paper has presented a performance comparison of a Hybrid-CLP and a GA which were 
applied to a mixed model non-permutation fl owshop, designed to consider intermediate or 
centralized resequencing buffers. The primary objective is the minimization of the makespan, 
but also setup-cost and setup-time is contemplated. Furthermore, the buffer access is restricted 
by the number of buffer places and the physical size. Comparing the results of the proposed 
approaches, it can be concluded that the Hybrid-CLP performs well on problems with 10 
stations, approximately 10 jobs and only few distributed resequencing buffer places. The 
Hybrid-CLP furthermore is positively infl uenced when additional restrictions are present, such 
as the introduction of the centralized instead of the intermediate buffer location. The GA on 
the other hand performs better when only few stations are considered with access to offl ine 
resequencing buffers but with several buffer places each. The direct comparison of the Hybrid-
CLP with the GA demonstrates that the GA outperforms the Hybrid-CLP in the vast majority of 
the cases with static demand. In the case of the semi dynamic demand, with a fi xed job sequence 
for the fi rst station, the improvements for both approaches are considerably larger, even for 
larger problem sizes. The Hybrid-CLP outperforms the GA when the number of buffer places 
at each resequencing possibility is limited to a small number, whereas, the GA gives better 
results when larger buffer places are used. Concerning future work, on one hand it would be 
interesting to consider a cyclic product fl ow rather than a cluster of jobs, and on the other hand, 
to study a dynamic demand for the incoming jobs. Secondly, and based on the experience from 
the Hybrid-CLP, the use of a Hybrid-GA, which is the use of the CLP within the GA, could give 
competitive and promising results.
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