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1. Introduction 
Parallel algorithms have focused an increase interest due to advantages in computation time 
and quality of solutions when applied to industrial engineering problems. In this 
communication
, we present a prototype for a parallel hybrid algorithm combining an exact 
method like Branch and Bound (B&B) and a metaheuristic like Complete Local Search 
(CLM), Ghosh and Sierksma (2002), based in the sequential algorithm Bound Driven Search 
(BDS), Framinan and Pastor (2008). 

2. Parallel hybrid algorithms 
It has been demonstrated that cooperation between different types of algorithms leads to 
better quality solutions and more robust methods, Talbi (2002), Basseur et al. (2004). 
Although there are many sequential algorithms combining metaheuristics or metaheuristics 
and exact methods, there are few implementations of parallel hybrid algorithms combining 
exact and approximate methods. In the survey carried out by Jourdan et al. (2008) there are 61 
references of hybrid methods but only 3 describe parallel hybrid methods combining exact 
and approximate algorithms. The only exact method mentioned is branch and bound. 

Another survey is the one by Puchinger & Raidl (2005). This one refers an architecture of 
hybrid parallel algorithms based on multiagent systems. Each agent is an algorithm, so the 
system can be executed in one or more processors of a computer, in a cluster of workstations 
or in a distributed set of computers. The architecture is known as teams of agents in two 
similar approaches, Asynchronous Teams (A-Teams) as described by Talukdar et al. (1998), 
by Talukdar (1998) and by Talukdar (1992) or TEams for Cooperative Heterogeneous Search 
(TECHS) as presented by Denzinger & Offerman (1999).  

3. Parallel hybrid prototype 
In this prototype (Figure 1), we extend BDS algorithm employing several parallel processes. 
Half of them are dedicated to B&B and the rest employ CLM. The first B&B process 
generates an initial solution using a constructive heuristic (step 1 in figure 1). This process 
explores the tree of solutions (step 2) and generates three lists of solutions: complete solutions 
(LIVE), partial solutions (P_LIVE) and solutions belonging to pruned branches 
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(FORBIDDEN). This first exploration of the tree must generate a number of partial (P_LIVE) 
solutions greater than the number of B&B processes and a number of complete (LIVE) 
solutions greater than the number of CLM processes. This strategy guarantees that each of the 
processes will be able to start its search from a different solution. 

P_LIVE list is broadcasted to the rest of B&B processes together with FORBIDDEN and 
LIVE list (step 3). The lists broadcasted to CLM processes are LIVE and FORBIDDEN (steps 
4 and 5). 

From now on (steps 6 and 7), each B&B process iterates exploring branches of the tree (steps 
10 and 11) in a deep-first strategy. At the beginning of each iteration, the process deletes as 
many partial solutions from P_LIVE as the number of the process. This strategy prevents 
different B&B processes to explore the same branch of the tree. 

At the same time (steps 8 and 9) CLM processes iterate exploring the neighbourhood (steps 
12 and 13) of the solutions of LIVE list. At the beginning of each iteration, the process deletes 
as many solutions from LIVE as the number of the process. This strategy prevents different 
CLM processes to begin exploring the same neigbourhood.  

We employ the concept of energy conservation as described in Pacheco (1997) for a tree 
search algorithm. When one process ends its work, it looks for more work looking for 
pending messages from other process. If there’s a message, it receives data and continues 
working. This strategy is necessary to obtain an efficient parallel algorithm, avoiding both 
waiting processes and overloaded processes. 

When a process ends its exploring, it looks for messages pending to be received from other 
processes. If there is a message, the process will receive it and store the received solutions if 
they are new or improve the best current solution. The process will continue receiving 
messages till there are no more. After receiving messages, the process will send the new 
solutions found in the exploration. 

We extend here this concept taking into account that there are processes exploring a tree and 
others exploring a neighbourhood. The kind of information required is different. 

When a B&B process ends an iteration finding a complete solution, it sends the new found 
solutions to the rest of processes as they need them: B&B processes need to know if the upper 
bound has been improved by another process and they also need to know if there are new 
pruned branches. CLM processes need to know new complete solutions and solutions that 
cannot be explored. Thereby, B&B processes send new solutions added to P_LIVE, LIVE and 
FORBIDDEN lists to other B&B processes (steps 14 and 15). They send new solutions added 
to LIVE and FORBIDDEN lists to CLM processes (step 16). 

CLM processes end an iteration due to three conditions: they have explored all the 
neighbourhood, they have run out of memory or they have explored many solutions without 
any improvement in the objective function. At each iteration, CLM processes send to B&B 
processes the best found solution if it is better than previous sent solution to help them 
improve the upper bound. CLM processes send to other CLM processes the best solution and 
the solutions added to DEAD list in the last iteration, to prevent them to explore the same 
neigborhood. Thereby, CLM processes send new solutions added to DEAD list to other CLM 
processes (steps 17 and 18). They send the best solution to B&B processes (step 19). 

This is the same strategy used by Denzinger & Offerman (1999). B&B processes send to the 
rest, positive and negative information. Positive information is included in P_LIVE and LIVE 
lists and negative information, pruned branches of the tree, is included in FORBIDDEN list. 
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In the other hand, CLM processes send positive information, the best found solution and 
negative information in DEAD list, all explored solutions. 

When a process receives a message containing solutions found by other processes, it must 
update its knowledge of the search (steps 20-23). B&B processes should update the upper 
bound with the solutions received from CLM and the lists from B&B processes and 
consequently the content of P_LIVE and FORBIDDEN lists. Also, CLM processes should 
update LIVE list deleting the solutions similar to those received in FORBIDDEN list and 
DEAD list with the solutions received from other CLMs. 

 
Figure 1. Sequence diagram of parallel BDS algorithm 

To finish the algorithm, there are two possible conditions. The obvious one is that one of 
B&B processes has found the exact solution. The second one is that a prefixed amount of time 
has passed since the beginning of the algorithm. 

The first condition is verified when all B&B processes has emptied their partial solutions lists. 
To verify this condition, each B&B process could use an binary array composed of the signal 
of empty list send by other processes. When a process receives a message telling another one 
has emptied P_LIVE list, insert this condition into the array and checks if all B&B processes 
have sent this condition. In that case, it will send a stopping message to all the processes 
(steps 24 and 25). In the other hand, when a process receives new partial solutions, it must 
update this situation in the array. 

The second condition is verified by each process simply using the system clock to check if 
time elapsed from the beginning of the algorithm has surpassed the maximum time available 
for the exploration. 
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4. Future work 
The next step in our research is the implementation of this algorithm in a cluster of 
workstations employing MPI as the communication mechanism. Our challenge will be to 
develop an efficient algorithm applied to the permutation flow shop problem. 

The main difficulties in this implementation will be to obtain an efficient algorithm due to the 
communication policy used. The first solutions sent by the first B&B process will use 
MPI_Bcast() function, and can be easily implemented. The rest of messages must be sent in a 
non-blocking way so the process can continue exploring the tree or the neigbourhood and 
sending messages to other processes simultaneously. 

In our first experiences, we have found it difficult to make processes notice that there are 
pending messages, at least in small problems, when computation ends quickly and there is no 
time to read all the communication. Another issue happens when a process has found many 
solutions and the receiving process cannot read all the message before the communication is 
interrupted by another communication.  
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