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1. Introduction 
Although Data Envelopment Analysis has gone a long way since it was formulated by Farrell 
(1957), there are still some problems whose solution remains unsatisfactory, one of them 
being homogeneity. Homogeneity is a key assumption within Data Envelopment Analysis 
(DEA) where all Decision Making Units (DMUs) are required to conform to three rules: first, 
they should undertake the same processes; second, they should use the same inputs to produce 
the same outputs; lastly, it is required that they operate within the same environment: Dyson 
et al. (2001), and Haas and Murphy (2003).   

In practice, homogeneity is seldom present.  It is common for data sets to contain non-
homogeneous units.   For instance, we may be interested in assessing the efficiency of bank 
branches.  Homogeneity would require all of them to engage in the same activities, but large 
branches will carry out most banking activities, whilst smaller branches may only engage in 
some of them.  Standard use of DEA would prevent direct efficiency comparisons between 
small and large bank branches.   Two ways of proceeding have been followed under these 
circumstances, either to base the analysis on a limited number of activities shared by all 
DMUs; or study only a limited number of DMUs that engage in exactly the same activities.  
Both solutions are clearly unsatisfactory. 

Many attempts have been made in the past to study efficiency when DMUs were not 
homogeneous.  Sarrico and Dyson (2000) tried to compare the efficiency of departments at 
Warwick University.  They found that not all departments shared the same inputs: Science 
departments required laboratories and equipment while a Humanities department did not.   
They overcame this problem by running a DEA model for each department against external 
competitors in the same area, a very different matter from comparing departments within a 
university, the objective they had originally set to achieve.  Another example is provided by 
Athanassopoulos and Thanassoulis (1991) who studied efficiency in the brewery industry, and 
tried to overcome the problem of non-homogeneity by grouping breweries into those that had 
passing trade and those that did not.  The breweries were then analysis separately and gained 
an efficiency score within their group but, again, this is not an ideal solution. 

Non-homogeneity was also encountered by Ray (1991) when studying public schools; by 
Fizel and Nunnikhoven (1992) in the area of nursing homes; by Sexton et al. (1994) in pupil 
transport; and by Zenios et al. (1999), and Soteriou and Zenios (1999) in banking.  All of 
them devised ad hoc rules in order to deal with this problem. 
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 A popular way to deal with the homogeneity problem is by using a two-step procedure.  In 
the first step, DEA scores are calculated, and in the second step, these scores are regressed 
against possible causes of non-homogeneity that had not been included in the original 
formulation.  Examples are: Ray (1991), Sexton et al. (1994), Fizel and Nunnikhoven (1992), 
Mancebon and Mar-Molinero (2000), and Hass and Murphy (2003).   

Here we propose a new approach to a common form of non-homogeneity, the one 
encountered when not all DMUs share the same inputs and/or outputs.   This model can also 
be used to address the question of whether it is better to diversify or to specialize. 

The rationale of this new model will be presented and the model formulated.  Equations will 
be given for the envelopment and the ratio form of the model.  The model will be 
demonstrated with some data from Beasley (1995).  The paper will end with a concluding 
section. 

2. The model  
For clarity of presentation, it will be assumed that we are trying to assess efficiency in 
university level institutions.  There will be three types of university institutions in the 
assumed data set: those, such as standard universities, that engage in both teaching (T) and 
research (R); those that engage in teaching but not in research; and those, such as research 
institutes, that engage in research but not in teaching.  We would like to study the efficiency 
with which these institutions conduct the R and the T functions by using the complete, non-
homogeneous, data set.  In the case of institutions that perform both the T and the R function, 
this will involve estimating a DEA score for the T activity and a DEA score for the R activity.   

This problem has another interpretation.  We are, in fact, asking the question of whether it is 
better to specialize (leave the T function to T only institutions, and the R function to R only 
institutions), or to diversify (conduct both activities jointly).  We have not found any other 
attempt in the DEA literature of addressing the diversification versus specialization issue. 

As in any DEA problem, there are two formulations for the model: the ratio form, and the 
envelopment form.  We think that the philosophy of the modeling procedure is better 
understood within a ratio formulation, although we will mathematically formulate the 
equations for the envelopment form.  The ratio form of the model will also be given for 
completeness. 

The standard DEA model, in the ratio formulation, is often interpreted as follows. 

“Take the DMU whose efficiency we wish to assess.  Define efficiency as the ratio of 
weighted outputs to weighted inputs.  The DMU under observation is allowed to choose the 
weights to be used in this ratio so that its efficiency is maximized, but once such weights are 
chosen they are applied to study the efficiency of the remaining DMUs in the data set.  If, 
using the same weights as the DMU under observation, no other DMU achieves a higher level 
of efficiency, the DMU under observation is efficient.  If, using the same weights as the DMU 
under observation, other DMUs achieve higher efficiencies, the DMU under observation is 
inefficient”.  Of course, this story needs to be completed with the conditions that the weights 
need to be strictly positive, and that efficiencies are positive numbers between zero and one. 

The problem of estimating the efficiencies of activities that are jointly performed was studied, 
under constant returns to scale, by Beasley (1995), Mar-Molinero (1996), and Mar-Molinero 
and Tsai (1997); and, under variable returns to scale, by Tsai and Mar-Molinero (2002).   This 
model has been applied to the UK health service by Tsai and Mar-Molinero (2002), to police 
forces by Diez-Ticio and Mancebon (2002), to the study of education costs by Salerno (2006), 
and to bus services in Taiwan by Yu (2007). 
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Under the joint efficiency model, some inputs are allocated only to the T activity, some inputs 
are shared between the T and R activities, and some inputs are allocated only to the R 
activities.  In the same way, some outputs can be attributed to the T activity, some outputs 
reflect the effort devoted to the T or the R activity, and some outputs depend only on the R 
activity.  The DMU under observation has to decide how to allocate shared inputs to the R or 
to the T activities, and how much effort to devote to produce outputs from the T or the R 
activities.  This it does by taking into account the importance attached to the T activity, the 
importance attached to the R activity, and the desire to be seen to be operating as efficiently 
as possible under both activities when compared with other DMUs.   

The rationale of joint efficiency DEA algorithm is based on the same philosophy as before: 
once the DMU under observation has decided how to allocate shared inputs, and how to 
attribute shared outputs, this split is applied to all other DMUs and efficiency calculations 
take place as usual.  Efficiency calculations can take place as usual because, once the split of 
shared inputs and the split of shared outputs have been decided, we face a standard DEA 
problem for the T activity, and a standard DEA problem for the R activity. 

 The ability to split the joint problem into a T problem and a R problem allows us to 
incorporate the T only institutions, which will be compared with the T part of the institutions 
that engage in both T and R activities; and R only institutions, which will be compared with 
the R part of the institutions that engage in both T and R. 

We now give the mathematical formulation for the complete model.   This requires 
introducing notation. 

Let there be I outputs, and J inputs.  Let there be S DMUs that engage in both T and R, P 
DMUs that only engage in T, and Z DMUs that only engage in R.  Let the DMU whose T and 
R efficiencies we wish to calculate be indexed as k.  We will be calculating efficiencies under 
the output oriented formulation with variable returns to scale.  The model can be modified in 
order to accommodate other formulations. 

yis
T  is the amount of output i associated only with the T activity for DMU s. 

yis
R  is the amount of output i associated only with the R activity for DMU s.    

yis
TR  is the amount of output i associated with both the T and the R activities for DMU s, of 

which a proportion Ei can be attributed to the T activity and a proportion 1- Ei can be 
attributed to the R activity. 

xjs
T  is the amount of input j allocated only to the T activity of DMU s.    

xjs
R  is the amount of input j allocated only to the R activity of DMU s.    

xjs
TR  is the amount of input j allocated in part to the T activity and in part to the R activity of 

DMU s.   A proportion Pj is allocated to the T activity, and a proportion 1-Pj is allocated to 
the R activity. 

Os
T is the DEA multiplier for the T activity of DMU s. 

Os
R is the DEA multiplier for the R activity of DMU s. 

wk
T is the inverse of the T efficiency for the DMU under observation, k. 

wk
R is the inverse of the R efficiency for the DMU under observation, k. 

 The importance attached to the T activity and to the R activity is captured by the weights TT 

and TR.  These weights are determined outside the model and reflect the priorities of the 
decision maker.  It is customary to choose them so that they add up to unity. 
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Finally, let the overall efficiency of DMU k be measured by ek.   

We are now in a position to write down the equations for the model. 

The objective is to maximize the output obtained from the resources used by DMU k. 
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We will now turn to the constraints and we will start with the inputs.  Institutions that engage 
in both the T and the R activities may use some inputs that are specific to the T function, 
while institutions that only engage in the T activity (and do not engage at all in the R activity) 
may use the same inputs.  This will produce equations of the form: 
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There will be a similar equation for each of the inputs that are allocated only to the R activity 
by institutions that engage in both T and R.  These inputs could also be allocated to R if 
assigned to R only institutions. 
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In line with the formulation given by Mar-Molinero (1996), inputs that can be allocated in 
part to the T activity and in part to the R activity will produce only one equation.  These 
inputs could also be allocated to T only institutions, and used only for T purposes, or allocated 
to R only institutions and used for R only purposes.  This produces equations of the type: 
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We now turn to the constraints associated with outputs.  Outputs that are only the result of the 
T activity produce 
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The corresponding equation for R only outputs is:  
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And the equation for outputs that are the result of both T and R is 
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Under variable returns to scale, two additional constraints are required, one for the T activity 
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and one for the R activity:  
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It is possible for this formulation to produce outputs without any inputs by, for example, 
setting the value of ȝj either to zero or to one.  To avoid the possibility of producing outputs 
without inputs we need some further constraints:  

jjj Mm dd P  

iii Bb dd E  

The formulation is completed with the usual limiting conditions that require that all unknowns 
be positive.  The efficiency factors wT and wR are required to be greater than one, but the 
model ensures this automatically. 

See Figures 1, 2, and 3 for a schematic representation of the structure of DMUs that engage in 
both T and R, and DMUs that engage only in T.   

 
Figure 1.- Structure of a DMU that engages jointly in T and R 
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Figure 2.- Structure of a DMU that engages only in T 

2.1. Example 
The model will be demonstrated on some data for university physics departments provided by 
Beasley (1995).  Each physics department is a DMU.  In Beasley’s paper there are only two 
activities: Teaching and Research.  In this paper we will consider three activities: 
undergraduate teaching (UT), postgraduate teaching (PT), and research (R).  For the purposes 
of this paper we will consider all three activities to be of equal importance; i.e., the weights 
TUT , TPT and TR were each set to one third in the objective function when all three activities 
were present.  When a department did not engage in PT, the weight TPT did not appear in the 
objective function, and the other two weights were set to one half each. 

Beasley’s data set is not homogeneous, as there are many DMUs that do not engage in PT.  It 
is exactly the situation that can be modeled with the equations presented here.  

We will use the same inputs as Beasley: equipment expenditure, and general expenditure.  
DMUs will attempt to allocate these expenditures between the activities. A lower limit of 0.1 
and an upper limit of 0.9 were set for the proportions in which these shared inputs can be 
divided. 

The number of undergraduate students is the output of the UT activity.  The number of 
postgraduate students is the output of the PT activity.  Given the way in which universities 
work in the UK, this is a reasonable distinction to make, as engaging in postgraduate teaching 
is a departmental decision, while undergraduate teaching is the result of a national negotiation 
between the funding bodies and the universities.  As in Beasley, the research activity 
generates research students and research income.  Beasley uses a third output for the R 
activity, research rating, but this is not used in this paper. 

The model was estimated with specially written software using the package LINGO.  The 
results are shown in Table 1.  It is seen that only two departments are 100% efficient, and that 
these are departments that do not carry out the PT activity.   There are also a number of 
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departments that are efficient in certain activities, but not overall.  Whilst the model is not the 
exact replica of Beasley’s (1995), it does show similar results within the overall efficiencies.   

 

Physics 
department  

Overall 
Efficiency 

Undergraduate 
Efficiency 

Research 
Efficiency 

Postgraduate 
Efficiency 

Aberdeen 6.61% 19.77% 30.10% 2.70% 

Aberystwyth 10.41% 15.63% 25.41% 5.41% 

Bangor 15.83% 14.14% 17.97% N/A 

Bath 42.78% 33.88% 58.01% N/A 

Birmingham 46.72% 73.05% 36.49% 43.24% 

Bradford 7.58% 56.64% 3.87% 8.33% 

Bristol 47.24% 52.76% 42.77% N/A 

Brunel 28.46% 20.35% 100.00% 21.62% 

Cambridge 25.44% 64.71% 100.00% 10.81% 

Cardiff 26.57% 29.03% 24.49% N/A 

Dundee 28.30% 29.58% 18.05% 59.51% 

Durham 42.56% 37.32% 49.53% N/A 

East Anglia 24.36% 13.87% 100.00% N/A 

Edinburgh 7.03% 58.94% 25.14% 2.70% 

Essex 28.11% 17.19% 37.34% 45.95% 

Exeter 30.59% 47.39% 22.59% N/A 

Glasgow 13.45% 78.55% 39.44% 5.41% 

Herriot-Watt 6.78% 32.48% 23.80% 2.70% 

Hull 33.69% 25.55% 49.45% N/A 

Keele 27.99% 24.74% 32.21% N/A 

Kent 34.37% 29.61% 40.98% N/A 

Lancaster 30.15% 24.82% 45.03% 27.03% 

Leeds 32.17% 31.07% 33.35% N/A 

Leicester 38.18% 31.02% 49.65% N/A 

Liverpool 29.76% 32.35% 23.01% 37.84% 

London 
Birkbeck 13.98% 5.15% 100.00% 97.30% 

London Imperial 76.87% 99.09% 77.84% 62.16% 

London KQC 44.53% 36.40% 57.34% N/A 
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London Q. Mary 20.50% 39.95% 20.28% 13.89% 

London R. Hol
Bed 21.62% 33.40% 61.26% 10.81% 

London Univ. 
Coll. 7.55% 40.51% 100.00% 2.76% 

Loughborough 36.89% 28.54% 52.17% N/A 

Manchester 71.21% 64.89% 74.05% 75.68% 

Newcastle 45.03% 35.65% 100.00% 35.00% 

Nottingham 46.93% 46.51% 47.36% N/A 

Oxford 100.00% 100.00% 100.00% N/A 

Reading 27.83% 20.14% 22.57% 72.22% 

Salford 37.84% 29.39% 41.52% 47.22% 

Sheffield 7.12% 61.27% 28.44% 2.70% 

Southampton 39.67% 41.69% 32.24% 48.51% 

St. Andrews 44.85% 29.55% 81.50% 48.13% 

Stirling 100.00% 100.00% 100.00% N/A 

Strathclyde 42.15% 57.06% 33.42% N/A 

Surrey 44.60% 21.87% 86.55% 100.00% 

Sussex 51.26% 37.77% 64.54% 60.39% 

Swansea 22.17% 19.87% 31.11% 18.92% 

UMIST 33.28% 23.71% 55.79% N/A 

Warwick 42.75% 39.89% 46.05% N/A 

York 15.77% 27.76% 32.41% 8.11% 

 

3. Conclusion  
This paper has explored a new way of dealing with one type of non-homogeneity in DEA, the 
one that manifests itself when some Decision Making Units do not carry out the same 
activities as others, and they do not share some inputs or outputs.   

Direct comparisons of non-homogeneous units can now be made without the need for 
unnecessary assumptions within the model.  This paper has looked at how the models 
formulation works and shows the dual calculations.  Beasley’s (1995) data has been used as 
an illustration of how the model runs.     
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