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1. Introduction 
Rescheduling is one of the main consequences of the variability in the shop floor, as a number 
of unforeseeable disruptions make impossible to follow the original schedule (Wu et al 
(1993)). Typical disruptions are the arrival of new orders, order cancellations, rush orders, etc 
(Hall and Potts (2004)). In the case of the arrival of new jobs at the time that the current 
schedule is being executed, there are two broad options for the scheduler: a) considering the 
jobs in the system as ‘frozen’ (i.e. the schedule of the previous jobs is maintained) or b) 
allowing the modification of the schedule of the jobs in the system and rescheduling them 
together with the new jobs. The first approach implies a machine availability constraint 
problem, denoted MACP, studied by Perez Gonzalez and Framinan (2009). The second 
approach is addressed in this work.  

2. Problem statement 
In line with the related literature (see e.g. Unal et al (1997)), jobs are classified either as ‘old’, 
or ‘new’ jobs. We assume that the set of old jobs, denoted JO with nO jobs, belongs to a 
previously scheduled order, so they share a common due date d which is a given parameter. A 
set of new jobs, JN with nN jobs, arrives to the system. The proposal of the problem under 
consideration --called RP in this work-- is to determine the schedule S formed by jobs 
belonging to J = JO UJN with n = nO+nN jobs, and objective the minimisation of the makespan 
of new jobs, denoted as max ( )NJC S , in order to set a tight due date for the new jobs while not 
violating the due date of the old jobs. Therefore, a feasible sequence S is a sequence in which 
the completion times of jobs in JO are less or equal than their common due date, i.e. 

max ( ) max ( ) 0O OJ J
jT S T S  , with ^ `( ) max 0, ( )O OJ J

j jT S C S d � the tardiness of the job Oj J� , 

and ( )OJ
jC S  the completion time of the job Oj J�  in the last machine. Note that it is 

equivalent to ( ) ( ) 0O O

O

J J
j

j J
T S T S

�

  ¦ , i.e. the total tardiness of S for jobs in JO is zero.  

Among the different shop floor layouts, we focus on the flowshop. Using the notation defined 
by Graham et al (1979), our problem  can be denoted as  max max| , | / 0N OJ J

jFm prmu d d C T  , 
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where Fm indicates a flowshop with m machines, prmu denotes the permutation case, dj = d 
specifies the use of a common due date, and max max/ 0N OJ JC T   the constrained objective function. 

This problem is strongly NP-hard for more than two machines, since if we consider the set of 
old jobs as an empty set then it is reduced to the classical permutation flowshop scheduling 
problem with objective minimise the makespan (the classical problem is denoted as CLP), 
which is known to be strongly NP-hard (Pinedo, 1995). For this reason heuristic methods are 
proposed in this paper in order to solve the problem in an approximate way.  

2.1. Related literature 
To the best of our knowledge, RP has not been as we consider two different objectives, one 
for each set of jobs. Only some references consider similar problems for a single machine, for 
example, Unal et al (1997), Hall and Potts (2004), Mocquillon et al (2008) and Yang (2007). 
There are similar approaches in the literature on flowshop scheduling with due date related 
objectives: the permutation flowshop problem with the objective of minimising the makespan 
subject to a given maximum tardiness, denoted max max| | ( , )Fm prmu C TH  following the 
notation of T'kindt and Billaut (2002) for multi-criteria scheduling problems. For 
convenience, we denote this constrained scheduling problem as COP. It is a special case of a 
more general problem denoted max| | ( , )Fm prmu Z TH  with max max(1 ) , [0,1]Z C TO O O � � � . 
We denote this problem as Generalised COP or GCOP, being COP the case when Ȝ=1.  Given 
the similarity of these problems, the methods applied to GCOP or COP could be adapted to 
our problem RP. The best method to solve GCOP, and consequently to COP, is provided by 
Ruiz and Allahverdi (2009). 

3. Heuristic methods 
Solving the rescheduling problem under consideration is not an immediately issue. As 
mentioned before, the problem is NP-hard, and its comparison with the CLP and the MACP, 
reveals that RP is the most difficult (Perez Gonzalez et al., 2007). We have adapted the best 
existing methods found in the literature for the most similar problems to our problem (CLP 
and COP) in order to compare them with a new proposed heuristic. The Iterated Greedy (IG) 
algorithm proposed by Ruiz and Stützle (2007) is among the best methods to solve the CLP. 
Currently, the best heuristic known to solve COP is the so-called Steady State Genetic 
Algorithm, SGAT, proposed by Ruiz and Allahverdi (2009). We have adapted both methods 
to the problem under consideration and propose a new heuristic based on the Variable 
Neighbourhood Search (VNS), developed by Mladenovic and Hansen (1997). The heuristics 
and results are detailed in the following subsections. 

3.1. Iterated Greedy algorithm 
Iterated Greedy (IG) algorithm (Ruiz and Stützle, 2007) is a heuristic method which generates 
a sequence of solutions by iterating over greedy constructive heuristics. It is simple and easily 
applicable to other problems, so the adaptation to our problem implies a minor modification, 
maintaining the original values of the parameters. We consider feasible solutions, considering 

max ( )NJC S  as objective function for each solution S. The pseudo-code is shown in Figure 1. 
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Figure 1. Pseudo-code of IG 

 
In the original IG, the initial sequence is constructed by NEHT, improved version by Taillard 
(1990) of the NEH heuristic (Nawaz et al., 1983). For our problem, the initial solution has to 
be feasible and it is generated by the Initial Feasible Solution method which uses an 
adaptation of the NEHT to the MACP, called ANEHT, considering the machine availability 
instants (ai) to compute the makespan. The Destruction and Construction procedures are 
detailed in Ruiz and Stützle (2007). The parameter į associated to these procedures is 
adjusted obtaining the best results for į = 4, being very robust. The local search procedure, 
called Iterative Improvement, improves each solution generated in the construction phase. 
The last step of IG is to accept or not the new sequence as the incumbent solution for the next 
iteration. Ruiz and Stützle (2007) consider a simple simulated annealing-like acceptance 
criterion, with a constant temperature, 

1 1
/ 10m n

iji j
Temperature T p n m

  
 ¦ ¦< < < , where T is a 

parameter set to T = 0.4, being the heuristic rather robust with respect to T. 

3.2. Steady State Genetic Algorithm 
In the Steady State GA, presented by Ruiz and Allahverdi (2009), there is only one population 
and new individuals do not replace their parents, but a new individual replaces the worst 
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individual of the population if this new one is unique and better than the worst one. Only 
minor modifications have to be implemented to adapt SGAT to our problem, maintaining the 
original values of the parameters. SGAT is described in Figure 2.  

Figure 2. Pseudo-code of SGAT 

 
In the original SGAT, two super-individuals are generated in the first step, one by the EDD 
(Earliest Due Date) rule and the other by the NEHT method. The EDD rule sorts the jobs in 
increasing order of their due dates, but in our case we have a common due date for all jobs of 
JO, therefore it is not possible to apply it. Instead, we generate an initial solution by applying 
NEHT to J = JO UJN. The second super-individual is generated by the Initial Feasible Solution 
method previously described for IG. The population size selected by Ruiz and Allahverdi 
(2009) consists of 50 individuals. SGAT allows unfeasible solutions in the population by 
defining three states for the population. The fitness value of each individual may be calculated 
depending on each state: State 1, all solutions are feasible. For this state, the objective value 
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( max
NJC  in our problem) of the individual is considered as the fitness value. State 2, there is a 

mixture of unfeasible as well as feasible solutions in the population. In this case, the fitness 
value is computed by calculating the worst feasible objective value and by adding this value 
to that of the unfeasible solutions. Thus, the best unfeasible solution always has a fitness 
value that is worse than the worst feasible solution. State 3, all solutions are unfeasible. The 
fitness value considers the maximum tardiness given by the sequence. By doing so, the SGAT 
is pushed so that feasible solutions are found as fast as possible. 

For parent selection, a fast and simple selection operator, the n-tournament selection 
procedure is chosen. They set the pressure parameter to 30%. The crossover procedure 
selected is the two-point (TP) (see Michalewicz, 1994). The probability of carrying out a 
crossover after selection is called pC, and the best value tested by Ruiz and Allahverdi (2009) 
is pC = 0.3. The mutation operator consists of extracting one job from the individual and re-
inserting it in another random position. The probability of an individual to be mutated is pM, 
set to 0.02. SGAT also incorporates a Light Local Search which is applied to the best solution 
in the initial population, and to a fraction pLS, set to 0.15, of offsprings generated after the 
crossover and mutation. We have adapted the Taillard's improvement to speed up the Light 
Local Search for RP, by discarding unfeasible positions if the job involved in the insertion 
belongs to JO. Finally, each new individual is checked to guarantee its ‘uniqueness’ once the 
fitness has been calculated in order to avoid clones in the population. These procedures are 
detailed in Ruiz and Allahverdi (2009). 

3.3. Refreshing VNS 
Variable Neighbourhood Search (VNS) was developed by Mladenovic and Hansen (1997). It 
is a metaheuristic based on changing the neighbourhood in a local search procedure. Some 
authors have used this metaheuristic in flowshop scheduling problems, being all references 
very recent (see e.g. Framinan and Leisten, 2007; Pan et al., 2008 and Blazewicz et al., 2008). 
In most references, a hybrid version is developed, in which VNS is combined with another 
heuristic such as IG, SA or TS, among others. In our case, we present a variant called 
Refreshing VNS, RVNS, with some novel features. In principle, VNS only considers feasible 
solutions, but our approach is aimed to problems in which there may be unfeasible solutions 
in the neighbourhoods. For this reason, our variant of VNS tries to repair the solutions 
(similarly to the idea proposed by Allahverdi, 2004), and includes an escape method. In 
addition, we define two types of solutions: a) strict solutions, with the feasibility guaranteed 
for this kind of solution, and they can be a solution for the constrained problem; and b) 
relaxed solutions, which can be either feasible or unfeasible. Relaxed solutions are considered 
for the construction of neighbourhood structures. In general, they cannot be solutions for our 
problem. Only some relaxed solutions are selected in the heuristic to check its feasibility. In 
this case, if a relaxed solution is feasible, it is considered as strict solution. Usually, when 
unfeasible solutions are considered, the objective function is penalised. However, as we 
assume relaxed and strict solutions, the same measure is defined as objective for both kinds of 
solutions. Figure 3 shows the pseudo-code of the Refreshing VNS. 
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Figure 3. Pseudo-code of RVNS 

 
Our method starts with two sequences, Sbest, which is generated by the Initial Feasible 
Solution procedure explained previously and compared to the new strict solutions found by 
the method, and the initial relaxed solution S obtained by the NEHT applied to all jobs in J. If 
S is feasible and better than Sbest, then Sbest = S.  

A Shaking method is applied for each neighbourhood structure with size k, with 1�k�kmax�n, 
being n the jobs in the system. We set kmax = n*20%, as it makes no sense to explore very 
large neighbourhoods of S once smaller neighbourhoods have been explored without good 
results. For each k, k jobs are selected at random, removed and inserted on a new random 
position of S one by one. For each neighbour S0, if it is feasible and better than Sbest, the latter 
is updated. Then, if S0 is better than S, then boolean flag change is set as true. In this case the 
local search is applied. Otherwise, the escape method is carried out. 
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Several local search procedures are applied to the relaxed sequence after the shaking in the 
case of change equals true. The General Local Search is an iterative improvement method 
where a job selected at random is inserted by using Taillard's improvement method in all 
possible positions of S if it belongs to JN, or in all feasible positions of S if it belongs to JO. 
Sbest is updated if the sequence obtained is feasible and better. If the relaxed solution obtained 
by the General Local Search is feasible, the Intensify method tries to improve it. A special 
case occurs when the makespan of the jobs in JN is lower than the common due date of JO, i.e. 
all jobs are sequenced before the due date. An iterative improvement method (denoted as 
Special Case) is built for this situation. If the solution obtained by the general local search is 
unfeasible, then the objective is to repair it. This is done by removing the tardy jobs and 
inserting them in new positions chosen at random. If the new sequence is feasible and better 
than Sbest, then it is adopted as the best solution. 

If there is no improvement after shaking, the local search methods described in the previous 
subsections cannot be applied. Instead, an Escape method allows escaping from local optima. 
Depending on the feasibility of the current solution, a high number of jobs belonging to the 
corresponding sets JO or JN are removed and inserted in new positions. The percentage of jobs 
to be removed, q, is randomly generated between 75% and 90% of nN or nN, depending on the 
feasibility of the sequence. If it is feasible, q�nN jobs in JN are removed and inserted 
according to the following rule: the first job selected at random is scheduled in the first 
position, the second in the second position, and so on. If the sequence is unfeasible, q�nO jobs 
of JO are removed and inserted by the same procedure. For both cases, if the sequence 
obtained is feasible and better than Sbest, then Sbest is updated. 

4. Computational experience 
In order to evaluate the effectiveness of the Refreshing VNS as compared to IG and SGAT, 
we carry out an extensive computational analysis. We employ the test-bed by Taillard (1993), 
which consists of 120 instances of various sizes nxm, with n = {20,50,100,200,500} and m 
={5,10,20}. These instances constitute an excellent benchmark to test different solution 
procedures for CLP, being widely used in this context (see e.g. Ruiz and Stützle, 2007 and 
Framinan and Leisten, 2007). We need two set of jobs, JO and JN. Then, we use the processing 
times available for each instance as the processing times for both sets, being nO = n/2 and nN = 
n/2. In addition, a common due date for jobs in JO must be generated for each instance. A 
tight common due date with respect to the makespan of JO will not allow rescheduling them 
together with JN. Instead they will remain fixed, and the problem will turn into a MACP. On 
the other hand, a loose common due date for JO would be not realistic, and the due date will 
be verified for any schedule, so the problem will turn into a CLP. Different methods for 
generating due dates in the flowshop literature have been analysed, turning out that generating 
a due date according to the distribution d~U[ max

OJC , max
OJC (1+R)] with R a slack factor greater 

than zero, similar to the idea suggested by Unal et al. (1997), serves to provide the most 
realistic due dates as compared to other methods. The best results have been obtained for R = 
0.4. The makespan provided by the NEHT applied to JO is employed as value for max

OJC . 

The parameters used for IG and SGAT are those in the original description of the heuristics. 
Moreover, in both cases the stopping criterion is the computation time, given by the 
expression n*(m/2)*t milliseconds, with t = 60. To compare the heuristics, the relative 
percentage deviation is computed by RPD = max max max( ) ( ) / ( )N N NJ J JC HEUR C BEST C BEST� , where 

max ( )NJC HEUR  is the makespan obtained by heuristic HEUR and the best known makespan for 
each instance is max ( )NJC BEST . 30 independent trials have been run for each instance. The 
results in Table 1 show that the IG is not suitable to solve RP, as it provides the highest values 
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of ARPD. SGAT and RVNS provide better results, being RVNS the best with respect to the 
average for all 120 instances. 

Table 1. ARPD for SGAT, IG and RVNS for each problem size 

nOxnNxM IG SGAT RVNS 
10x10x5 3.0412 0.2445 0.2038
10x10x10 8.6571 2.9801 1.8765
10x10x20 12.0777 3.3373 0.1965
25x25x5 2.6764 0.1137 0.0690
25x25x10 7.8093 0.8839 0.7274
25x25x20 9.4488 1.1586 1.0410
50x50x5 1.9967 0.0556 0.0519
50x50x10 6.9759 0.4213 0.4626
50x50x20 9.2723 0.9024 0.6459
100x100x10 4.8322 0.1415 0.2156
100x100x20 7.8181 0.7011 0.4656
250x250x20 4.8898 0.3572 0.2632

5. Conclusions 
This paper aims at a special case of a rescheduling problem, which is motivated by the need 
of setting a common due date for a set of jobs while there is another set of jobs in the system 
that have been previously scheduled. The problem is denoted as RP, and it is NP-hard in the 
strong sense for more than two machines, so we propose several heuristics to solve it. Two of 
them have been adapted from similar problems in the literature, i.e. the IG algorithm by Ruiz 
and Stützle (2007) to solve the CLP, and the SGAT by Ruiz and Allahverdi (2009) for the 
GCOP. In addition, we have developed a new heuristic for the problem based on VNS, called 
Refreshing VNS. This heuristic is adapted to constrained problems, as it handles both feasible 
and unfeasible solutions. Nevertheless, we avoid penalising the objective function by 
introducing the concept of strict and relaxed solutions, allowing to reduce the objective 
function to max

NJC  in order to compare the solutions, and checking the feasibility only for the 
sequences identified by the heuristic as good ones. A test-bed based on the benchmark set by 
Taillard (1993) has been used to analyse the performance of the heuristics. The results show 
that RVNS is statistically different and better than SGAT, and the IG algorithm exhibits a 
poor performance for our problem. 

To the best of our knowledge, this is the first time that VNS is applied to constrained 
flowshop problems. Since the heuristic makes use of specific knowledge about constrained 
problems, it is possible to extend it to other problems of this nature, considering the wide 
literature about constrained problems in scheduling, for example in permutation flowshop 
problems (see e.g. Minella et al., 2008). 
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