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Abstract 
During the past years, the industry has shifted position and moved towards “the luxury 
universe” whose customers are demanding, treating individuals as unique and valued 
customer for the business, offering vehicles produced with the state of the art technologies 
and implementing the highest finishing standards. Due to the competitive level in the market, 
motor makers enable processes which equalizes customer services to E.R. management, being 
dealt with the maximum urgency that allows the comparison between both, car workshops 
and emergency rooms, where workshop bays or ramps will be equal to emergency boxes and 
skilled technicians are equivalent to the health care specialist, who will carry out tests and 
checks prior to afford any final operation, keeping the “patient” under control before it is 
back to normal utilization. 
This paper ratify a valid model for the automotive industry to estimate customer service 
demand forecasting under variable demand conditions using analogies with patient demand 
models used for the medical ER. 
1. Introduction 
Motor makers experience product-related requests from customers that are used to align the 
product with market’s necessities improving the attractiveness of the product. However, these 
requests could become disruptive when including threats that unless the feature is added, 
changed, fixed etc., the customer will not buy the product, will stop servicing it or sell it. 

As a rule, car manufacturers build strong service networks, but, even in the best case, a gap 
still remains between customer real demands and Authorized Service retailer’s workload. 
Formerly, premium brands were being focused on reaching high service standards to match 
their customer expectations on service and maintenance, placing price on a secondary option, 
while volume car maker’s acts basically on pricing and service times. According to premium 
brands point of view, a car entering the workshop is treated as a matter of urgency; it is like a 
patient entering an emergency room of a hospital and needs to be diagnosed with regards to 
the symptoms present in this moment, to offer the best solution for this particular case. 

The seminal references found for the present document are based on the works of B. Liu, 
who, in 1976, established an input-output approach for regional hospital needs projection. 
Later, in 1982, R. D. Kamenetzky, L. J. Shuman and H. Wolfe studied a how to estimate 
necessities and demands for prehospital care.  
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Usually, motor makers make their facilities capacity estimations using empirical methods 
considering various restrictions, but typically customers arrivals occurs under uncertain 
conditions and variable demand that were not included in the calculations, producing work 
overloads, stocks backorders and customer complaints. Opposite to that, medical emergency 
services apply different techniques to dimension hospital facilities according to the 
demographic distribution of the area to be serviced. Estimations are compared with a 
computer model simulation result and validated to create a model to be applied in future 
health services. 

Other authors afford the case from an operational research point of view, such as: A. Bagust, 
M. Place and J. W. Posnett studied in 1999 a dynamic model to be used for accommodating 
emergency admissions applying stochastic simulation. Later in 2004, S. C. Brailsford, V. A. 
Lattimer, P. Tarnaras and J. C. S. Turnbull studied an emergency and on-demand health care 
model for large complex systems. Then in 2006, L. V. Green, S. Savin and B. Wang studied a 
model to manage patient service in a diagnostic medical facility. 

Subsequently in 1989, D. M. Rhyne reviewed the applicability and a measure of forecasting 
systems in managing hospital services demand. In 1993, M. A. Badri and J. Hollingsworth 
published a simulation model for scheduling in the emergency room. Also, in 1996, Y. 
Gerchak, D. Gupta and M. studied a reservation planning under uncertain demand for 
emergency surgery.  

This paper substantiate the process to accommodate the existing models used for medical 
facilities to the service needs of a car service network and explores experimental procedures 
used in ER management for comparing the capabilities of complex discrete event service 
systems. Instead of measuring system capability by analyzing or simulating the system with a 
constant rate of arriving work, system capability is measured as the maximum rate of work 
arrival for which the system has a steady state. Hence, we seek the arrival rate which causes 
the system to be at full capacity. This rate is arguably the best indication of the service 
system’s capability. 

2. A general service model 
Inclusion of more ad more electronic devices interacting together in the car makes requires a 
better understanding of vehicle electrical architecture and has an impact on training needs, 
modern facilities with nice and clean workshops and, of course, a good management to ensure 
the required productivity and efficiency. Opposite to that, generally, low salaries still offered 
to the workshop technicians enabling a high personnel rotation.  

The former statement supposes any skilled technician will act as experienced doctor to 
diagnose a critical patient in an emergency box. The service receptionist will therefore assign 
jobs and times to the workshop according to pre-established priorities rivalling the medical 
ER. Customer requests can be a double-edged sword. On the one hand they can help point the 
way of where the market wants a company to go. On the other, requests can become 
disruptive and distracting. By understating the factors behind customer requests, the dynamics 
of the relationship and how these requests impact the process, companies can channel the 
“request energy” into positive channels leading to a better product that customers are excited 
about and willing to pay for. 

A maxim of the analysis of service systems is the structure will have stationary long-run 
behaviour if and only if the number of arriving tasks are, on average, less than the number of 
tasks the system is capable to process. The service systems considered are centralized, 
controllable and do not generate tasks at a rate A per unit time. Tasks are admitted upon 
generation and processed by the system; completed tasks are ejected from the system that has 
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the capability to process as many tasks per unit time on average. If our overall system can 
work at a maximum of p tasks per unit time, we can input as many as p per unit time and the 
system will remain stationary. If A is our arrival rate for the system, we wish to manipulate A 
to expose p. 

Work-conserving queuing models do not allow tasks to expire or to create other tasks while in 
service. Those tasks will not split or combine and always finish service. Work-conserving 
queuing system models are common in both the practice and literature of applied probability. 
In a typical experiment, we generate input to the system at a constant rate, monitor the 
performance of the system either at fixed intervals or upon departure from the system, and 
employ well known methods of steady-state analysis to estimate the steady-state average of 
the performance measure. 

The service level constraint formulation allows for expansion policies that either anticipates 
demand reaching the capacity position or react to demand having exceeded it. Its evaluation 
by using barrier option pricing tools is exact, and therefore the numerical results supersede 
those where timing and size decisions were made sequentially and evaluation of the service 
level constraint could err on the side of caution. The optimal expansion parameters nearly 
always increased or decreased together. The delayed and infrequent expansion strategy that 
corresponds to large values of both parameters is optimal when greater shortages are 
permissible, lead times are short, economies of scale are significant, average demand growth 
is small, and/or demand volatility is low.   

The opposite strategy, of small and frequent expansions that are initiated proactively, is 
optimal when the problem parameters reacts a more stringent service level, smaller economies 
of scale, and greater risk of shortage from the combination of long lead times and faster or 
more volatile demand growth.  

Lastly, a deterministic lead time was considered for expansion. A probability distribution 
could be considered for lead times to make it more realistic and the act of stochastic lead time 
on the capacity expansion problem could be analyzed. 

3. Capacity reserve 
Few estimations of hospital cost structures have taken account of this aspect of hospital 
production and none have been applied. Freidman and Pauly (1983) and Gaynor and 
Anderson (1995), have all incorporated the impact of stochastic demand on hospital cost 
structures, while also recognising that hospitals control the output decisions, in response to 
such demand. In these studies the emphasis has been on estimating the cost of maintaining 
reserve capacity.  

4. Full capacity 
Hospitals reserve capacity in response to demand uncertainty to aid the specification for 
optimal capacity, which incorporates reserve capacity costs.  

Running at full capacity also imposes a cost, however, in the form of production inflexibility, 
leading to patients being queued or turned away. There is therefore a trade-off between the 
cost of holding unused capacity in order to service stochastic demand, and operating at full 
capacity and turning patients away.  

This trade-off defines the optimal level of reserve capacity compatible with economically 
efficient utilisation. As Gaynor and Vogt (2000) note in any case, failure to take account of 
stochastic demand and the consequent production responses, leads to misspecification of 
hospital cost-output relations. 
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5. Optimal capacity 
The resolution of optimal capacity depends on the appropriate specification for outputs. One 
limitation of previous studies is they have used aggregate measures of hospital total 
admissions to define output.  

A second limitation of previous studies is the reliance on annual or quarterly fluctuations in 
demand to model hospital responses to stochastic demand. It seems more realistic to model 
shorter-term fluctuations in demand to capture such responses.  

Use of aggregate measures, for both hospital output and demand fluctuation, will lead to a 
loss of information on the form and structure of the demand uncertainty. The precise 
stochastic nature of demand will vary according to the type of case being serviced. There are 
two ways to generate data from a work-conserving system which will reveal the maximum 
processing rate in the system. They are: 

– input tasks to the system at a rate known to be much higher than the system can handle 

– fill the system, then input a new task every time that a task completes 

In the former, the rate of outgoing jobs eventually converges to p. Instead of  choosing a very 
high input rate and dealing with the problems of exploding buffer contents and a no recurrent 
system, we will simply close off the system and recalculate the tasks which finish. Hence, we 
take the second approach. 

6. Elective and stochastic demand admissions 
Hospitals distinguish between elective and emergency admissions. Each hospital allocate the 
fixed capacity based on their expectations of emergency demand turning into effective 
demand, recognising that these expectations may not be realised ex post.  

Demand for emergency services is assumed randomly distributed with a known probability 
density function, while there is an assumed excess demand for elective treatments. Hospital 
referrals are designated to be emergency or elective cases with waiting lists used to explicitly 
ration the capacity allocated to elective treatments. 

Simultaneously each individual hospital retains some capacity to meet stochastic emergency 
demand, while also maintaining a waiting list for elective demand. In order to produce at any 
given level of output the hospital commits resources ex ante based on a forecast of emergency 
demand. Given seasonal fluctuations and the short-term nature of hospital planning such 
forecasts are based on within-year variations, even although budget allocations are tied to a 
yearly cycle. 

7. Forecasting with limited data using ARIMA models 
A time series is a set of observations ordered according to the time they were observed. As the 
value observed at time t may depend on values observed at previous time points, time series 
data may invalidate independence assumptions.  

An ARIMA(p, d, q) model can be used for temporal dependence in several ways. First, the 
time series is differenced to render it stationary, by taking d differences. Second, the time 
dependence of the stationary process is modelled by including p auto-regressive and q 
moving-average terms, in addition to any time-varying covariates. For a cyclical time series, 
these steps can be repeated according to the period of the cycle, whether quarterly or monthly 
or another time interval. ARIMA models are extremely flexible for continuous data.  
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It should be noted that not all choices of parameters produce well-behaved models. In 
particular, if the model is required to be stationary then conditions on these parameters must 
be met. 

8. Forecasting hospital demand using ARIMA models 
Hospital bed managers face a difficult task in attempting to allocate their beds between 
emergency admissions and so-called elective admissions, which are planned and, in general, 
referred by the patient's doctors or consultants. Depleting the bed availability in an attempt to 
clear waiting lists runs the risk of being unable to admit emergency cases. On the other hand a 
policy of reserving too many beds for emergency admissions has an obvious impact on 
waiting lists.  

The conceptual motivation for the empirical variable cost model estimated below follows that 
of Freidman and Pauly (1983) and Gaynor and Anderson (1995). Following the latter a short-
run cost model is estimated with attention focussed on how hospitals use existing fixed 
capacity to service unexpected demand. Variable hospital costs are specified as a function of 
the in-patient output, disaggregated into emergency and elective outputs, as well as other 
dimensions of output such as day case, accident and emergency and outpatient activity, and 
other characteristics of the hospital such as teaching status. An estimate of the level of fixed 
resource use, measuring the extent of excess capacity is incorporated through the inverse 
occupancy rate, which also controls for length of stay.  

All these cost elements are conditioned on the hospital’s estimate of unexpected demand as it 
relates to the probability of the hospital being full. This is controlled for through an estimate 
of unexpected emergency demand that enables empirical testing of whether or not uncertainty 
impacts hospital costs. It is hypothesised that if the coefficient on this variable is positive and 
significant, then demand uncertainty imposes a real cost on hospital production. It is this 
variable that differentiates the approach from the traditional cost function.  

The small number of studies which have estimated such a variable have used different 
estimates of demand uncertainty as proxies for the standby capacity required to service 
unexpected demand. Gaynor and Anderson (1995) use the first two moments of the 
distribution of annual demand to proxy the relationship between unexpected demand and 
standby capacity. Of course the annual level of data smoothes within period fluctuations while 
the focus on the described distribution emphasises the predictive content of the information 
used. Freidman and Pauly (1983) employ a measure of the ratio of expected to actual demand 
analysed on a quarterly basis.  

Given that a ratio is estimated, the level of uncertainty is not captured. Indeed such measures 
of demand uncertainty reflect the expected fluctuations in demand, i.e. the ones the hospitals 
can predict. If hospitals do accurately predict the fluctuations then there is no reason to expect 
this to impact on costs. Following Freidman and Pauly (1983), a simple autoregressive 
process was modelled assuming demand expectations are related to prior demand experience. 
Panel data were used to estimate the demand-forecast equation for emergency admissions, 
and the performance criteria rest on their ability to forecast, rather than explain behavioural 
relationships.  

In the short-run, while the overall capacity is fixed, there is still a choice over the level of 
different outputs. Maintaining consistency with the theoretical specification, beds are 
separated into those allocated to the elective sector and those to the emergency sector. These 
are calculated on the basis that, under conditions of excess demand, occupancy rate in the 
elective sector is assumed to be 100%, which is consistent with the existence of substantial 
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hospital waiting lists for elective treatments. The level of staffed elective beds is therefore 
based on elective admissions and length of stay in that sector.  

The remaining service availability is assumed to be used for urgent admissions, including an 
element of reserve capacity. This enables the staffed beds allocated to each sector and the 
level of reserve capacity in the emergency sector to be determined. 

There is no theoretically accepted functional form for hospital cost functions consequently to 
determine an appropriate functional form a Box–Cox transformation applied to both 
dependent and explanatory variables was initially estimated. The results suggested a square 
root transformation on the dependent variable would fit the data with reasonable  

The marginal costs of emergency and elective admissions are based on the variable cost 
element, which is taken from the estimated coefficient on the admission variables in the cost 
equation, and the quasi-fixed element taken from the beds variables. The quasi-fixed element 
is adjusted for length of stay in the emergency and elective sectors, respectively.  

9. Service model development 
There are some approaches to this type of problem. In terms of the way in which data was 
gathered over time it seemed perfectly natural to treat the problem as one of times series 
prediction. 

The initial proposition is select a dealer in a local area to enable visits on a weekly basis to 
check the model development and future updates. Data will be collected from dealer 
management system (DMS) used by brand franchised workshops to control operational 
productivity.  

A second data collection will be downloaded from the brand warranty management systems 
to compare stochastic demand and expected visits. With this data comparison we will be able 
to understand both kinds distribution and study the particularities of the temporary component 
of the distribution for a given brand.   

One of the reports supplied by the brand shows non expected visits in different categories by 
model, vehicle system, repair process or number of visits. In order to limit the study to a 
suitable dimension, the selected service should comply with the following conditions: 

– Enabling the study of two premium brands. 

– Ease the data collection from a management software pack. 

– Offer similar customers typology and characteristics. 

– Have similar facilities avoiding seasonal differences and other external factors.  

– Possibility to avoid management and productivity factors among both brands services. 

After data is collected and treated we are able to classify the information by breakdown 
typology (model, frequency, systems affected, cost, jobs arranged Vs stochastic demand) or 
workshop average benefit (spare parts sales, % first pick availability) 

As result of this classification, data can be processed to be shorted by model. The new 
datasheet will be processed following the steps below: 

– 1st data period analysis (Statistics & Forecasts) 

– Simulation model definition 

– Data simulation and corrective coefficients definition 

– 2nd data period forecast 
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– Forecast results analysis in comparison with the real values 

– FINAL MODELING 

10. Data analysis 
Once the data was collect from the Dealer Management System, both samples can be 
processed using any of the statistical tools available in the market. In this particular case, the 
software used was a free license program called XLSTAT, which can be used as a Microsoft 
Excel add in. 

11. Considerations to the model 
Breakdowns and maintenance tasks occurs randomly in time, but there is a seasonal nature 
component  during summer and other holiday periods and previous weeks which can generate 
a system input peak to the organization management. First, because every customer is willing 
to have his vehicle fixed and maintained, but also due to the higher mileage for old cars and 
less skilled drivers. 

12. 1st data sample analysis 
In the case of study, it is noticed the total demand per month is not increasing on a yearly 
basis. Yearly variations seems to be higher and monthly variations are cyclical each next year. 

0

50

100

150

200

250

en
e-

05

m
ar

-0
5

m
ay

-0
5

ju
l-0

5

se
p-

05

no
v-

05

en
e-

06

m
ar

-0
6

m
ay

-0
6

ju
l-0

6

se
p-

06

no
v-

06

en
e-

07

m
ar

-0
7

m
ay

-0
7

ju
l-0

7

se
p-

07

no
v-

07

en
e-

08

m
ar

-0
8

m
ay

-0
8

ju
l-0

8

se
p-

08

Elective demand Total

Stochastic demand Demand W/O elective W/O seasonal nature

 
Figure 1 – System inputs (demand) tender analysis  

In order to get the yearly variations clear, we take the Neperian logarithm of the decomposed 
series, without seasonal nature. A new graphic is obtained showing less noticeable yearly 
variations. 
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Figure 2 – LN (Demand W/O elective W/O seasonal nature) 
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Once the  data has been treated, a complete statistical analysis can be obtained by running the 
different tools in XLSTAT. Selecting the option XLSTAT-SWINDLE in the toolbar and the 
command XLSTAT/XLSTAT-Swindle, an ARIMA report can be carried together with a 
complete analysis of the data.  

Table 1. XLSTAT – ARIMA report 

Centring: YES
Parameters: p = 0 / d = 1 / q = 0 / P = 0 / D = 1 / Q = 1 / s = 46
Optimice: Verosimilitude (Convergence = 0.00001 / Iterations = 500)
Intervals of confidence (%) :  95

Descriptive statistics:  

Variable Minimum
129.444.306.930.693 122,851

Observations Maximun
45 200,366

Obs. With lost data Average
0 160,839

Obs. Without data Stantard Deviation
45 18,357  

The "Series to analyze" corresponds to the series studied, the data LN (Demand without 
seasonal nature without prior appointment).  The option is left "to Centre" activated in order 
to permit XLSTAT centring the series automatically. 

13. 2nd data sample forecast 
With the ARIMA information shown on Table 1, a model can be formulated for each sample 
of data and future periods could be then foretold. In the given example, the final formula was 
compared to the last 6 months real values to confirm the results were appropriate and use 
them to make former adjustments. The final equation will look like the following: 

X(t+1) = Y(t+1)+X(t-1)+X(t-n)-X(t-m) (1) 

14. Conclusions 
The results suggest that services do incur costs in holding reserve capacity to service 
stochastic demand. By separating out this stochastic demand from the excess elective demand 
it is possible to quantify this cost. If brand regulatory policies are to be guided by analysis of 
service costs such considerations are of paramount importance. The setting of labour fees and 
service levels depends on the accurate demand forecasting, cost of service and understanding 
of their influence. In turn, fees should be set at a level that provides the appropriate incentives 
to workshops to hold reserve capacity where this is an efficient response to demand 
uncertainty.  

In this application the various measures of marginal cost and scale economies seemed 
plausible and consistent with our conceptual arguments relating to production responses to 
demand uncertainty. Therefore, the data used allows a more detailed specification of hospital 
output can be applied to the automotive service industry to forecast service requisites.  
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Furthermore, apparent inefficiencies resulting from services operating within production 
possibility frontiers may be explained by the existence of uncertain demand, therefore, care 
should be taken in the interpretation of efficiency rankings without adequate adjustment for 
demand uncertainty and its impact on cost structures. 

Automotive industry is very related to their customer’s requirements reaching occasionally 
slavishness provided to assure future sales and its continuity in the market. This situation 
grazes the operating limits at present, since clients do not accept a negative answer, services 
and manufacturers must afford costs when they have not been able to reserve sufficient 
capacity to attend these demands.  Likewise, if they are mistaken upon reckoning a high 
reserve of capacity they will incur in expenses if occupation is lower than expected. 

This paper has evidenced the advantageousness of using ARIMA models similarity to ER to 
forecast motor industry service demands levels. 
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