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Abstract 
In this paper we review the returns forecasting models described in the academic literature. 
Next, we build a model not requiring item-level information in the context of a case study 
conducted in Repsol GLP, the liquefied petroleum gases (LPG) division of Repsol group. 
Results are unexpected and put under scrutiny the estimates of the return rate and the return 
delay distribution obtained through this type of models when using a direct replacement 
policy. We think that the main cause for these results resides in the exchange of full for empty 
containers imposed by this policy; deliveries and returns are linked in time, and thus the 
hypothesis of unidirectional causality might not be respected.  

1. Introduction 
Reverse Logistics is still in its infancy as an academic discipline. The academic community 
has been able to determine the kind of activities that are generally carried out when dealing 
with reverse flows (Thierry et al., 1995). Quantitative models already proven in the operations 
management field have been successfully applied to strategic, tactical and operational 
decision-making in reverse networks (Dekker et al., 2003). New quantitative models have 
been developed when the special characteristics of the reverse logistics activities 
recommended so. However, the complexity and the management importance of the activities 
carried out in reverse supply chains can vary from one business scenario to the other and, 
therefore, the understanding we achieve of the field is still incomplete. In this context, 
logistics systems dealing with reusable containers have not received yet a global and in-depth 
analysis from the scientific point of view. Our literature review shows that only few scholarly 
publications directly address this topic (Goh y Varaprasad, 1986; Kelle and Silver, 1989a&b; 
Kroon and Vrijens, 1995; Del Castillo and Cochran, 1996; Flapper, 1996; Duhaime et al., 
2001; Van Dalen et al., 2005; Johansson and Hellstrom, 2007). The case study on which this 
paper is based on, and other industrial field studies previously carried out (Carrasco-Gallego, 
2007), reveal the need of deepening in our understanding of reusable containers life-cycle. 

Within the current social and economic context, where there is a growing concern about the 
depletion of natural resources and the sustainability of our productive models, the design and 
management of reusable containers systems might acquire a greater relevance. Industrial 

                                                 

 This work stems from the participation of the authors in a research project funded by Plan Nacional de I+D+i, 
DPI2007-65524, title “DOLI: Análisis y desarrollo de técnicas para el Diseño y la Operación de sistemas de 
Logística Inversa” (Analysis and development of techniques for designing and operating reverse logistics 
systems). 



312 
 

sectors utilizing today reusable containers to handle their products make it almost as an 
“obligation”, because of the restrictions imposed by the product itself, that make physically 
impossible the use of a disposable packaging (e.g. cylinders), or because of the clear cost 
savings achieved when introducing reusable handling elements (e.g. pools of palets, plastic 
containers, etc.). Nevertheless, we can’t rule out that, in the medium-term, industries currently 
choosing disposable packaging elements for distributing their products (recycle), can reorient 
their choice to returnable containers (reuse), as the new sustainability paradigm, grounded in 
resources’ scarcity, gains momentum, and it becomes more and more evident the need of 
switching our use-and –dispose model (one-way economy) to a closed-loop economic model, 
where a packaging element can have multiple lives.  

In our interaction with companies dealing with reusable packaging elements, managers have 
frequently reported difficulties in managing these logistics systems. The returnable items, 
even if they usually are a quite expensive asset, are not tightly controlled and many items are 
reported to be lost or irreparably damaged. The decision on when to buy new items and how 
many should be ordered is usually taken depending on marketing considerations or on 
financial resources availability rather than on the real grasp of the organization’s operational 
needs. Little or nothing is known about the items rotation in the system and when some 
operational know-how on this topic exists, is usually based on rough estimations. The 
required installed-base of items (the pool size) is usually unknown and managers report a 
need of establishing methodologies for calculating this pool size.  

All this reasons (scarce academic literature dealing with reusable containers, sustainability 
paradigm increasing the relevance of reuse, reports on difficulties to manage these systems in 
industrial settings) make us think that there are opportunities for researchers to make 
contributions in this field. That is why we have identified reusable containers management as 
an interesting research area and as the object of our study in this manuscript. 

In this manuscript the objective is to review the state of the art reflected in academic literature 
on returns forecasting techniques used in industry and to apply this tools to a real industrial 
case in the LPG sector. To achieve these objectives, we used the following methodology: we 
carried out a bibliographic review of the returns forecasting techniques described in academic 
literature. Next, the techniques not requiring item-level information were applied to a set of 
real data provided by a company using high value reusable containers for distributing LPG to 
end customers. Previously, a case study was carried out in this company to characterize their 
logistical practices. 

This manuscript is organized as follows. In section 2, we present the results of the literature 
review we conducted and provide a state of the art on returns forecasting in closed-loop 
supply chain contexts. In section 3, we present the company originating the raw data used in 
this analysis; we detail some characteristics of LPG cylinders closed-loop supply chain and 
explain how data were obtained and how our forecasting model was built. In section 4, we 
present the results obtained within the models and explain why the results resulted 
unexpected. Finally, in section 5, we conclude and introduce our future research directions.  

2. Literature review. State of the art in returns forecasting 
Forecasting techniques have been traditionally applied in the operations management area to 
obtain an estimate of future demands. Sales forecasts are used for decision-making at tactical 
and operational level, as they are an input from which we derive procurement plans, 
manufacturing plans, inventory management plans, distribution plans, human resources plans, 
and in general, different types of arrangements for the allocation of resources in the short and 
medium term. Plans are usually updated on a monthly basis along a rolling horizon of one to 
three years. Demand forecasting techniques analyze the dynamic structure of past sales data 
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series, project the past structure to the future and then provide a forecast for future sales 
values, which is valid in the short and medium term (Fig.2a). As the forecast of future sales is 
based in the past values of the same variable, the mathematical approach used in industry is 
univariate time-series forecasting methods. The complexity of techniques varies from the 
classical “deterministic” approach of methods such as exponential smoothing or Winters 
models to the contemporary “stochastical” approach of ARIMA models.  

 
Figure 1. (a) One-way supply chain, (b) Closed –loop supply chain (remanufacturing, reuse) 

Unlike the classical one-way supply chain (Fig. 1a), in order to have an effective planning and 
control process when dealing with a closed-loop supply chain (CLSC), forecasts on future 
sales and future returns are both needed (Fig. 1b). From these two inputs the above mentioned 
plans are derived. When we refer to returns forecasting, we refer to predicting the timing and 
quantity of returns in a given system as defined in Toktay et al. (2000). Uncertainty in the 
quality of the returns is a well-known characteristic of closed-loop systems but it has not been 
addressed for the moment in none of the returns forecasting models described in literature. It 
remains an interesting point of future research. 

Figure 2. (a) Demand forecasting; (b) Returns forecasting, one-way approach; (c) Returns forecasting, CLSC 
approach 

A possible approach for obtaining returns forecasts would be to apply univariate time series 
models to a set of data on historical past returns (Fig.2b). When the only information 
available is historical returns series, this seems to be a reasonable approach. Organizations 
managing linear reverse logistics systems, such as, for instance, sectorial recycling networks, 
would use historical series of collected volumes in order to forecast future collection volumes 
and thus elaborate plans on recycling activities (production plans) or on the number of 
vehicles required to assure proper collection at disposal points. However, as long as the 
wider-focused “closed-loop supply chain” approach is involved (i.e. coordinated management 
of the direct and reverse flows), using a univariate technique would mean ignoring the very 
relevant information on future returns that is contained in past sales. That’s why the returns 
forecasting methods described in academic literature are based on the idea that, with a given 
probability, past sales will generate a future return after a given delay, which represents the 
time the product is in the market. The natural forecasting approach is then the use dynamic 
regression models (Pankratz, 1991), that model the relationship between sales and returns 
(Fig.2c). These models are also known in literature as transfer function models or distributed 
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lags models. Once the parameters of the model have been estimated, we can use current sales 
values (input variable, tx ) to predict future returns (output variable, 1�ty ). These models rely 
on the hypothesis, that there is just unidirectional causality from { tx } to { ty }, ruling out 
feedback from the output to the input. When properly built, Peña (2005) reports that dynamic 
regression models provide more accurate forecasts than those obtained from the univariate 
model. 

The interest of obtaining a forecast for reusable containers returns resides not only in the 
estimation of future returned quantities and its timing, but also in the characteristics of 
containers’ life-cycle that can be deduced from the forecasting model, as will be further 
explained in 2.1. More precisely, we are interested in approximating the probability 
distribution of the return delay (L), which we define as the time elapsed from issue to return 
for a given container. L is random variable representing the time a reusable container is in the 
market. This distribution asymptotically tends to a value 1-r, which represents the probability 
that an issued container will never come back. Thus, let r denote the container return rate. L 
and 1-r are intuitively depicted in Figures 1b and 2c.  

2.1. Dynamic regression models for returns forecasting 
Let hypothesize that aggregate data on issues and returns are available for a given time period, 
such as the month. We are dealing then with two time series: 

� Let the series { ty } represent the number of items returned in month t (output series). 

� Let the series { tx } represent the number of items issued (sales) in month t (input series). 

Let a set of parameters 0v , 1v , 2v , …, fv  represent the probability that a given item issuing 
the system on period t, returns to the system either on the same period t, on the next period 
t+1, on period t+2, and in general, i periods afterwards, i=0,1,2,…, provided that the item will 
ever be returned. fv represents the probability that an item will never be returned ( fv =1-r). 
Thus, the number of articles being returned on period t as a function of the issues in previous 
periods can be expressed as follows, 

ttttt Nxvxvxvy ���� �� !22110  (1) 

where Nt can either be gaussian white noise or not ( NtaN(0;V) ). 

If item-level tracking information is available, the set of parameters iv , i=0, 1,…f can be 
empirically determined through the analysis of the distribution of the return delay (L) and the 
return rate (r) of a statistically significant sample of returnable items. When item-level 
information is not available, it is possible to estimate the dynamic regression model in (1) 
using historical data (time-series) of container issues and returns. For estimating the model, 
either transfer function or distributed lag approaches can be used. The estimation of the 
forecasting model in (1) enable us to identify the value of parameters 0v , 1v , 2v , …and fv (1-
r), and consequently, to obtain estimates of containers’ return delay distribution L and the 
return rate r. Through the estimation of a dynamic regression model we circumvent the need 
of tracking individual items for obtaining important parameters of the life-cycle of returnable 
items. 

In the case of transfer function models, the relationship (1) between input and output time-
series can be expressed as: 

ttt NxBvy � )(   (2) 
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where !��� 2
210)( BvBvvBv is the Box-Jenkins filter transfer function and Nt is the 

noise in the system (in transfer function models it doesn’t need to be white noise). Coefficient 
set iv , known as impulse response function, represent how the effect of an impulse in tx  in 
period t causes a reaction in the output time-series ty with a given time lag that is distributed 
across several time periods. The linear operator B is the backward shift operator. The number 
of parameters in the model as expressed in (2) is potentially infinite, and thus the model 
cannot be easily estimated. Therefore, the transfer function is usually expressed as quotient of 
two finite polynomials: 
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A sample of the values of the issues { tx } and returns { ty } time-series enable us to carry out 
the Box-Jenkins procedures of transfer function identification, model estimation and 
diagnostic checking. Goh and Varaprasad (1986) used a 60 months sample to estimate a 
transfer function model that provided the return rate and the coefficients iv  for three different 
product lines utilizing reusable bottles in a soft drink plant. In their results, they observed that 
the amount of returns from a single issue was statistically significant only in the first three 
months, with close to two-thirds of the containers being returned in the same month of issue. 
The proportion of lost containers was below the 5%.  

Another possible approach would be to use Bayesian inference in a distributed lag model, 
where we assume a specific form, based on theoretical considerations, of distribution for the 
lag in order to reduce the number of parameters to be estimated. A distributed lag model has 
the same form expressed in (1), but in this case, Nt necessarily has to be gaussian white noise 
Nt~N(0, V). Theoretical distributions usually assumed for the lags are geometrically 
distributed lags ( iv coefficients that decline exponentially, Koyck model, Pankratz (1991)) or 
Pascal (negative binomial) distributed lags. The disadvantage of this approach is that a given 
distribution is imposed on the data, while the advantage resides in the relatively parsimonious 
form of the model, where less parameters are to be estimated and, thus, requires smaller 
sample sizes for estimation. 

Toktay et al. (2000) use this approach to estimate a model for forecasting the returns of the 
reusable parts (circuit boards, plastic body and lens aperture) of the single-use Kodak camera. 
With a series of 22 months of sales and returns provided by Kodak, they obtain an estimate of 
0.5 for the return rate (r) and test the hypothesis of geometric, Pascal lag one and Pascal lag 
two distributions for the lags. The hypothesis test reveal that geometric distribution with an 
estimated parameter ^q=0.58 is the most plausible distribution, which is consistent with 
cameras being purchased, used and returned quickly after sale. 

Either through distributed lags models or through transfer function models, the academic state 
of the art in closed-loop supply chain management reveals that is possible to obtain an 
estimation of the L distribution (coefficients iv ) and the return rate (r) just using information 
of the aggregate sales (issues) and returns in each period of analysis.  

2.2. The value of individual containers track information in returns forecasts 
Based on the seminal work by Goh and Varaprasad (1986), Kelle and Silver (1989 a&b) 
provided tools for forecasting the net demand of containers during a given lead time, which is 
the forecasted demand of full containers minus the forecasted flow of returned empty 
containers. As the time from issue to return of an individual container is not known with 
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certainty and there is a finite probability for the container of never being returned, purchases 
of new containers have to be initiated when the inventory level of containers reaches a given 
reorder point. Kelle and Silver then calculate containers return forecasts and the 
corresponding reorder points under four different levels of information availability. They 
evaluate the performance of the four different forecasting methods and they conclude that, 
although having additional information obviously increase the forecasting method 
performance, most of the benefits obtained by using individual tracking of the containers (the 
most informed method) can be achieved by recording only the aggregate issues and aggregate 
returns period by period. This work was later on extended in Toktay et al. (2003) and in de 
Brito and van der Laan (2009), where the robustness of the four previous forecasting methods 
was analyzed in the case of imperfect information. The conclusion is that in the case of 
imperfect information the most informed method (item-level tracking) does not necessarily 
lead to the best performance.  

3. Applying returns forecasting techniques. The Repsol LPG case 
Once the state of the art in returns forecasting in closed-loop supply chains had been 
established, we went on to apply these techniques to a real industrial case. More specifically, 
to a data set provided by the LPG division of Repsol group. Repsol is integrated oil and gas 
company included in the group of the ten largest private oil companies worldwide and is the 
fifth largest European oil company in terms of stock exchange quotation, just behind BP, 
Total, Royal Dutch Shell and Eni. The LPG division has operations in Spain (where it holds a 
market share of roughly 80%) and the neighbouring countries (France, Portugal) and several 
iberoamerican countries (Ecuador, Peru, Argentina, Chile and Brazil). While LPG 
consumption grows in the developing countries, in the advanced economies LPG is a very 
mature or even declining market, where domestic use of LPG is being strongly substituted by 
safer or cleaner alternatives such as natural gas or renewable energies. 

An in-depth case study was previously conducted in order to study the characteristics of 
Repsol’s LPG cylinders’ closed-loop supply chain. When consumption volumes are low or 
moderate, which is usually the case of domestic customers, LPG products are ordinarily 
distributed by the means of cylinders. Repsol and their distributors deal simultaneously with 
the cylinder direct and reverse flow: cylinders are filled up in Repsol plants and sent out to 
distributors’ facilities, from where full LPG cylinders are delivered to domestic end users 
houses. When delivering the full cylinders, distributors are also responsible for collecting any 
empty cylinders coming from end users, which are finally redirected to Repsol plants in order 
to be refilled. Some cylinders need to receive specialized maintenance operations before they 
can be refilled again. The control policy installed in this system is direct replacement, using 
the terms defined in Flapper (1996), or “full for empty”, if we use the terms employed by 
Repsol management. This policy implies that distributors would only deliver n full cylinders 
if the customer can provide n empty cylinders in exchange. The first time a customer wants to 
buy LPG, a fee is to be paid in order to have the right of being delivered without providing the 
same amount of empty cylinders. When an LPG delivery contract expires (the customer quits 
the system) some money would be refunded if the empty cylinders are returned to a 
distributor. However, it is not exactly a deposit as the amount refunded is significantly lower 
than the fees paid for entering the system.  

Repsol registers in their information system the delivery notes of the exchanges they have 
with their distributors (number of full cylinders delivered and number of empty cylinders 
recovered by a given distributor). This information is the basis for further invoicing processes, 
so its accuracy should be guaranteed. The information coming from the delivery notes was 
aggregated in a monthly basis in order to obtain eight time series instances of 60 observations 
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each, corresponding to the number of cylinders monthly issued and returned from two 
different Repsol plants located in mainland Spain - Gijón and Pinto- and for two different 
LPG products, butane and propane, during the 2003-2007 period. 

From these data sets four transfer function models were built in order to establish a 
relationship between the issues and returns for each product in each plant. Repsol managers 
were much more interested in obtaining the information on the cylinder life-cycle parameters 
that can be derived from the transfer function model, such as the statistical distribution of the 
return delay (L) or the return rate (r), than in the return forecast itself. Repsol cylinders, for 
the moment, are not equipped with any track-and-trace technology that can univocally 
identify each single cylinder. Therefore, the knowledge managers have on cylinders life-cycle 
is limited and based in rough estimations and on their own “hands-on” experience.  

Next, we present how the four transfer function models were built. First, we graphically 
represented the eight time-series. All them are characterized by a marked seasonality, which 
is coherent with LPG market’s features: energy consumption for domestic heating during 
winter months is noticeable higher when compared with the rest of the year. In addition, the 
eight time-series present an also expected decreasing trend, given the decline of the LPG 
market in Spain. The time-series were seasonally adjusted using the free software applications 
TRAMO and SEATS, which can be obtained from the web page of the “Banco de España” 
(Spanish national central bank). Figure 3 depicts the two time series corresponding to Gijon 
plant and propane product before and after the seasonal adjustment process.  
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Figure 3. Joint graphical representation of input (issues, red line) and output (returns, blue line) time-series 
before and after the seasonal adjustment.  

As can be observed in the figures, monthly cylinders issues and returns time-series are 
extremely close, being almost the same time-series, except for slight differences that seem to 
be achieved in the peak sales months, where sales (issues) slightly surpass returns. Not an 
appreciable lag can be observed in this graphic representation.  

Table 1. Returns forecasting models for Repsol LPG cylinders 

 PINTO GIJÓN 
PROPANE yt=0.959 xt +0.036 xt-1 + Nt yt=0.954 xt +0.018 xt-1 +0.0229xt-2 + Nt 
BUTANE yt=0.997 xt +0.0105 xt-2 + Nt yt=0.989 xt +0.0085 xt-3 + Nt 

The four transfer function models were built using e-views, a well-known time-series analysis 
commercial package. The resulting models are depicted in Table 1. The coefficients given 
here are the statistical estimates of the iv  coefficients that resulted statistically significant. For 
the four models residuals are white noise. 
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4. Results 
The joint graphical representation of cylinder issues and returns time-series showed that the 
monthly values of issues and returns are very close, being almost the same time-series. This is 
not strange, given the direct replacement policy used in this system. Repsol delivery notes 
show that distributors usually respect the equal exchanges policy (provide as many empty 
cylinders as full are going to be retrieved) and if any discrepancies exist between the two 
figures they tend to be minimal (1 or 2 cylinders of difference in a usual delivery of 140 
cylinders (4 baskets)). This is also a consequence of how transportation is organized, as the 
empty leg is used for transporting the empty containers, and vehicles tend to be charged to 
their full capacity. This makes us wonder if there is really a need in industry for obtaining a 
forecast on monthly returns: when using a direct replacement policy, it would be sufficient to 
forecast our monthly sales in order to have a quite good estimation of our monthly returns. 
This information can be then used as an input for elaborating sourcing, manufacturing, 
distribution, etc. plans. How to deal with daily manufacturing scheduling remains unsolved. 

Besides the monthly returns forecast, the second output we expected to obtain from the four 
transfer function models was an estimation of the return delay distribution (L) and an estimate 
for the return rate (r), through obtaining the set of coefficients iv , i=0,1,…f. We observe in 
the four models that 0v  coefficient is always very dominant, that would mean that probability 
that a cylinder returns within the same month it was issued is above 95%. This contradicts the 
operational know-how of Repsol management, who estimates that cylinders trippage is 
around 3 or 4 refills per year, which entails a return delay of roughly 4 or 3 months, 
respectively. However, the dominance of 0v coefficient in the model is coherent with the 
graphical representation of issues and returns series: the value of { tx } is roughly the value of 
{ ty }. This result seems to be a related with the direct replacement (full against empty) 
collection policy, which somehow forces the number of cylinders returned in a delivery note 
to be exactly same of cylinders issued. Cylinders don’t “freely” return to filling plant when 
they are used up, but when a new delivery is arranged. The return forecast provided by the 
transfer function model is correct, but, on the other hand, the 0v coefficient dominance in the 
model conceals the real values of cylinders return delay distribution. This result makes us 
question ourselves the applicability of dynamic-regression-based models for obtaining 
relevant parameters on cylinders life-cycle, when a full against empty policy is governing the 
system.  

Another interesting result can be found when comparing the four transfer function models 
with each other. The choice of plants and products was not random. Regarding products, we 
expected a faster rotation (and a more pronounced seasonality) in the case of propane, as it is 
mainly used for domestic heating purposes. Regarding plants, Pinto is an urban plant, located 
in the south of Madrid region and delivering to distributors serving the city of Madrid. These 
distributors are able to provide service to all their end users in the 5 working days of a week. 
In contrast, Gijón is a rural plant, located in the Asturias region in the north of Spain, where a 
few distributors serve multiple scattered hamlet and small villages, which are served only 
once a week or a fortnight. Then, cylinder rotation was expected to be higher in Pinto than in 
Gijón plant. This seems to be reflected somehow in the model. If we compare butane and 
propane models for Pinto plant, we observe that while month 2 coefficient is statistically 
significant for butane, propane model in Pinto plant stops at month 1. When comparing, for 
instance, Pinto and Gijón butane rotation we observe that in Gijón month 3 is statistically 
significant while Pinto model stops in month 2.  
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5. Conclusions and further research directions 
The results obtained in this research put under scrutiny the applicability of dynamic-
regression based models for obtaining relevant parameters of the life-cycle of reusable 
containers, when a direct replacement control policy is used, which, on the other hand, is a 
quite frequent policy when dealing with high value reusable containers. Dynamic regression 
models are based on the assumption that a given impulse in the explanatory variable is freely 
transmitted to the future values of the endogenous variable with a given probability. A basic 
assumption in these models is that causality is unidirectional. However, when a direct 
replacement policy is used, cylinders do not freely return to the plant when they are used up, 
but only when the next purchase will occur. Due to the constraints imposed by transportation 
operations, issues and returns are linked in time in the real industrial situation. 

The results of this work show that when a direct replacement policy is in place, the monthly 
forecast of returns is not very different from the monthly forecast of sales, so a forecasting 
model for returns adds no much additional value to the planning and control process. 
However, other outputs that were expected to be obtained from the model, such as the return 
rate (r) or the return delay distribution (L), are of the utmost interest for companies owning 
reusable containers in their assets, and at the light of this work, need of individual container 
tracking for being determined. L distribution and r rate are needed in order to establish the 
minimum container pool size required to carry out operations smoothly or in order to establish 
the adequate purchasing policies for replacing lost or permanently damaged containers. Thus, 
the value of the information obtained through item-level tracking might be revised. The state 
of the art presented in subsection 2.2. is based on the assumption that an estimate of the return 
probabilities 0v , 1v , 2v , …, fv can be obtained from aggregate issues and returns recorded 
period by period. If the return distribution cannot be obtained through this method, then it has 
to be estimated either by expert judgement or by direct observation of the distribution, which 
requires item-level tracking. However, for L and r estimation purposes, organizations dealing 
with this type of closed-loop supply chain do not need to install tracking devices in the 
complete pool of reusable containers, but just in a statistically significant sample that allow to 
conduct empirical observations of the return delay distribution and return rate. The insights 
we acquired during this work enable us to predict that the lag distribution would depend on 
product, plant and season (meaning that the lag is seasonal, for example, LPG cylinders are 
expected to rotate faster in winter than in summer, as consumption increases in the cold 
months).  

As future developments of this research we propose to compare the return delay distribution 
in a given closed-loop system of reusable containers obtained through a dynamic-regression 
model and through the direct observation of the distribution by means of track-and-trace 
devices. This requires obtaining data form an organization registering aggregate issues and 
returns of containers and also tracking them in an individual basis.  

Acknowledgements 
We would like to thank Repsol GLP division management, and particularly, Jorge Aguirre, 
for their interest in collaborating in this research.  



320 
 

References 
De Brito, M.P. and Van der Laan, E. (2009), “Inventory control with product returns: The 
impact of imperfect information”, European Journal of Operational Research, 194 (1), pp. 85-
101.  

Carrasco-Gallego, R. (2007), Characteristics of production and distribution practices in 
closed-loop supply chains. The case of industrial and medical gases. [In Spanish]. DEA 
Research Work in UPM Doctoral Programme. Supervisor: Eva Ponce-Cueto. 

Del Castillo, E., Cochran, J.K. (1996). “Optimal Short Horizon Distribution Operations in 
Reusable Container Systems”. Journal of the Operational Research Society,47(1),pp.48-60. 

Dekker, R., Fleischmann, M., Inderfurth, K., van Wassenhove, L.N. (eds.) (2003). Reverse 
logistics: quantitative models for closed-loop supply chains. Berlin: Springer. 

Duhaime, R., Riopel, D., Langevin, A. (2001). “Value Analysis and Optimization of Reusable 
Containers at Canada Post”. Interfaces, 31, 3, pp 3-15. 

Flapper, S.D.P. (1996). “One-way or reusable distribution items?”, in: Proceedings of I-
CIMPRO’96 Intl. Conf., 3-4 June, Eindhoven, The Netherlands. 

Goh, T.N. and Varaprasad, N. (1986), A statistical methodology for the analysis of the Life-
Cycle of Reusable Containers, IIE Transactions, 18, pp. 42-47.  

Johansson, O., Hellström, D. (2007), “The effect of asset visibility on managing returnable 
transport items”, International Journal of Physical Distribution, 37 (10), 799-815. 

Kelle, P. and Silver, E.A. (1989a), Forecasting the Returns of Reusable Containers, Journal of 
Operations Management, Vol.8, No.1, pp. 17-35.  

Kelle, P. and Silver, E.A (1989b). Purchasing Policy of New Containers Considering the 
Random Returns of Previously Issued Containers. IIE Transactions, 21(4), pp.349-354.  

Kroon, L., Vrijens, G. (1995) “Returnable containers: An example of reverse logistics”. 
International Journal of Physical Distribution & Logistics Management, 25(2):56-68. 

Pankratz, A. (1991), Forecasting With Dynamic Regression Models. New York: Wiley. 

Peña, D. (2005), Análisis de Series Temporales. Madrid: Alianza Editorial. (in Spanish) 

Thierry, M., Salomon, M., Van Nunen, J., van Wassenhove, L. (1995). “Strategic Issues in 
Product Recovery Management”, California Management Review, 37(2), pp. 114-135. 

Toktay, L.B., Wein, L.M. and Zenios, S.A. (2000), Inventory Management of 
Remanufacturable Products, Management Science, 46 (11), pp. 1412-1426. 

Toktay, L.B., Van der Laan, E. and De Brito, M.P.(2003), “Managing Product Returns: The 
Role of Forecasting”. In: Dekker, R., Fleischmann, M., Inderfurth, K. and Van Wassenhove, 
L.N. (eds.), Reverse Logistics. Quantitative Models for Closed-Loop Supply Chains. 
Springer.  

Van Dalen, J., van Nunen, J.A.E.E, Wilens, C.M. (2005).“The chip in crate: the Heineken 
case” en: Flapper, S.D.P., van Nunen, J.A.E.E., van Wassenhove, L.N. (eds). Managing 
Closed-Loop Supply Chains. Berlin: Springer. 

 


