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Abstract 

This paper characterises the initial availability constraint problems in a permutation flowshop layout 

considering different objectives: makespan, total flowtime and idle time. The goal is to analyse the structure of 

solutions and to discuss the managerial implications of these three problems. Also, we intend to compare the 

cases with availability constraint with their classical counterparts, i.e. these problems with machines available 

on the planning horizon. The analysis raises an important conclusion of practical application: Since for most 

real-life environments scheduling is performed on a periodical basis and this would naturally lead to the 

unavailability of machines at the starting of the scheduling period, this scheduling decision problem becomes 

easier than its ‗classical‘ (i.e. without machine unavailability) counterpart. 

Keywords: scheduling, problem characterisation, permutation flowshop, machine availability 

constraint 

1. Introduction 

Machine availability constraint problems have been widely tackled in scheduling literature 

since there is a wide range of realistic situations where machines may not be completely 

available. Machine breakdowns (stochastic unavailability) (Allaoui et al, 2006), and 

preventive maintenance activities (deterministic unavailability) (Ruiz et al, 2007) are the most 

studied cases. However, a typical situation of deterministic unavailability is the case when 

machines are busy by processing jobs belonging to previously scheduled orders, i.e., the so-

called initial availability constraint. In this case, machines may not be immediately available 

for processing the set of jobs to be scheduled, but only from a date ai that we denote as 

availability instant. This problem is identified in an scenario where jobs must be scheduled at 

time T in a periodical manner, being H the decision period. In this case, the decision maker 

should schedule dynamically orders (jobs) that entered the system from T-H to T. Jobs 

scheduled in the previous period may not be completed at this point, and they can be merged 

with the new set of jobs and rescheduled, or can be considered as ―frozen‖, which causes the 

initial availability constraint. 

                                                 
 This work stems from the participation of the authors in the research project ―Advanced Systems for Integrated 

Order Management‖, grant DPI2007-61345, funded by the Spanish Ministry of Science and Innovation, and 

"SCOPE", grant P08-TEP-3630, funded by the Andalusian Government. 

 

mailto:pazperez@esi.us.es
mailto:framinan@us.es
mailto:pedroluis@esi.us.es
mailto:usano@us.es


 

 1416 

This paper characterises the initial availability constraint problems in a flowshop layout 

employing different objectives: makespan, total flowtime and idle time. We focus onto this 

shop floor setting since it is widely extended in the real-life manufacturing, being often 

claimed that many job shops are flowshops for most of the jobs (Knolmayer et al, 2002; 

Storer et al, 1992). The flowshop scheduling problem involves the determination of the order 

in which jobs with given and fixed processing times are processed in the same machine 

sequence to meet a desired objective. Here, the permutation case is considered, which 

assumes that the job sequence is the same on all machines.  

Among the objectives studied in the literature about flowshop scheduling, most of the 

attention has been devoted to minimizing either makespan or flowtime. The practical 

implications of both criteria are obvious: minimization of makespan leads to the minimization 

of the total production run, while minimization of flowtime leads to stable or even use of 

resources, a rapid turn- around of jobs, and the minimisation of in-process inventory. 

Additionally, minimization of machine idle time yields a high utilization rate for the machines 

(Framinan et al, 2003). 

The goal of our paper is to study these three problems, to analyse their structure of solutions 

and to discuss the managerial implications. Also, in this study we intend to compare the 

availability constraint problems with their classical counterparts, i.e. these problems with 

machines available on the planning horizon.  

2. Problem description 

Following the notation introduced by Graham et al (1979), our problem is denoted as 

Fm|prmu,ai|γ, where Fm means a flowshop problem with m machines, prmu  states that it is a 

permutation case, ai specifies the initial availability constraint, and finally, γ may be either 

Cmax, (makespan objective), F (total flowtime objective), or IT (idle time).  

Availability instants ai define the time from which machine i is available, thus ai≥0 for 

i=1,…m. Without loss of generality we can assume that ai≤ai+1 for i=1,…m. If ai≥ai+1 for 

some i, then ai+1 would not influence the problem. In fact, a given ai+1 may have influence if 

it is greater than ai+minj{pij} for i=1,…m, j=1,…n being pij the processing time of job j in 

machine i. In addition, we can assume that a1=0. If this is not the case, the reference change 

ai‘= ai- a1 may be done to guarantee that the first machine is available from the beginning of 

the decision period. 

2.1. Makespan objective 

Makespan is computed as the completion time of the last job in the last machine, i.e. Cmax= 

Cmn. The classical permutation flowshop problem with makespan objective, Fm|prmu|Cmax, 

denoted in the following as CPmak, can be optimally solved by the Johnson rule for m=2. This 

problem is NP-hard in the strong sense for m>2. The distribution of the solutions of this 

problem was studied by Taillard (1990). The distribution of the solutions of the constrained 

problem with makespan objective (Fm|prmu,ai|Cmax and denoted by APmak in the following) is 

analysed, and compared to that of CPmak, in Perez-Gonzalez and Framinan (2009), concluding 

that the former is easier that the latter. 

2.2. Flowtime objective 

Flowtime is defined as the sum of the completion times of each job in the last machine, i.e. 

F=ΣjCmj. The classical permutation flowshop problem with the total flowtime objective, 

Fm|prmu|F, denoted as CPflw, is NP-complete even in the two machine case (Garey et al, 

1976). Fm|prmu,ai|F is denoted as APflwin the following. 
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2.3. Idle time objective 

Finally, the idle time is defined as the sum of the idle times of each machine. This objective 

has been scarcely studied in the literature on flowshop scheduling. Only Ho and Chang 

(1991), Sridhar and Rajendran (1996) and Framinan et al (2003) consider the classical 

problem Fm|prmu|IT, denoted CPidle. All of these references compare the three objectives 

considered  in this work for the classical versions of the problem. The distribution of the 

classical problem has not been studied in the literature. The availability constraint version of 

this problem, Fm|prmu,ai|IT, is denoted as APidle. 

3. Analysis of the problems 

To analyse the problems presented in the previous section, we build a high number of 

problem instances and obtain all possible schedules together with the corresponding solution 

values (for the three objectives). A similar approach has been carried out by Taillard (1990) 

for CPmak, and Armentano and Ronconi (1999) for Fm|prmu|ΣTj, with ΣTj the total tardiness. 

The latter reference considers different scenarios for the generation of the due dates. We adapt 

the method considering different scenarios for the availability vector, and controlling the size 

of the vector by a factor k. 

3.1. Instances generation 

The parameters for the problem instances are the number of jobs, the number of machines and 

the availability vector a.  

Regarding the number of jobs and the number of machines, they should be restricted to small 

values in order to obtain all possible schedules and objective function values in a reasonable 

time. Therefore, n={5, 10} and m={5, 10}, generating problems with the following sizes n×m: 

5×5, 5×10, 10×5 and 10×10. 

Finally, we calculate different availability vectors with several sizes by employing Ci(Sini), the 

completion time of sequence Sini =[1,...,n], verifying that Ci(Sini) < Cj(Sini) for i < j, i=1,...,m. 

An initial vector is computed from these values doing a reference change where 

aj‘=Cj(Sini)−C1(Sini) for  j=1,...,m, i.e. a‘=[a1‘,...,am‘]=[0,C2(Sini)−C1(Sini),..., Cm(Sini)−C1(Sini)]. 

To control the size of the availability vector, we consider different values of k, and use a = 

k*a‘ as the availability vector. The selected values are k=0 (obtaining the problems CPl   

without availability constraint and the corresponding objective function) and k=0.5, 1 and 2 

(obtaining some cases of APl with l=mak,flw,idle for different sizes of a).100 instances have 

been generated for each combination of the values of n, m and k, so 100×2×2×4 = 1600 

instances of the problem are exactly solved by complete enumeration. These results are then 

summarized in order to extract conclusions on the distribution of the space of solutions. 

3.2. Distribution of the space of Solutions 

The distribution of the space of solution is given in relative terms to the optimal solution, i.e. 

we calculate the relative objective function value f 
r
(S) to obtain the approximation percentage 

to the optimal solution S
*
 of each sequence S regarding to its objective value. Then f 

r
(S)= 

f(S)/ f(S
*
)-1. 

Figures 1, 2 and 3 show the empirical distributions representing all possible values of each 

relative objective function obtained by complete enumeration of 100 problems with 10 jobs 

and 10 machines for all levels of the parameter k, for makespan, flowtime and idle time. The 

horizontal axis represents the percentage of approximation to optimal value and the vertical 

axis shows the empirical frequency (%), i.e. the percentage of solutions at each percentage of 

approximation to optimal value. 
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Figure 1. Distribution of solutions for small problems: makespan objective 

 

Figure 2. Distribution of solutions for small problems: flowtime objective 
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Figure 3. Distribution of solutions for small problems: idle time objective 

From Figures 1 and 2 it can be observed that as k increases, the frequency of solutions with a 

small approximation percentage is larger. Therefore, the problem becomes easier (in statistical 

terms) as k increases, being the case k=0, i.e. the classical version of the problems CPmak and 

CPflw, the most difficult problem for both objectives. Figure 3 indicates that the problem with 

idle time as objective is the most difficult, increasing the difficulty as k increases since a 

larger percentage of solutions are at 99% or more from the optimal solution. Similarities 

between the distribution of the solutions for the cases makespan and flowtime objectives can 

be observed as well. 

Table 1 presents the mean of the approximation percentage to the optimal solution for each 

problem, and the upper bound of the approximation percentage to the optimuml for 95% of 

the solutions. These results are classified by the objective function used, for all values of k 

and for all combinations of number of jobs and number of machines (n×m). 

Table 1. Mean and 95% of approximation to the optimal values for each objective. 

k Objective 

5×5  5×10  10×5  10×10  

Mean 95% Mean 95% Mean 95% Mean 95% 

0 

makespan 17.362 36 13.108 27 23.421 38 20.893 33 

flowtime 18.715 41 14.567 30 26.193 43 20.268 33 

idle time 87.971 99 86.285 99 96.396 99 95.957 99 

0.5 

makespan 13.615 28 11.003 22 15.013 25 16.392 25 

flowtime 12.751 27 11.807 24 15.703 25 14.478 22 

idle time 88.004 99 87.461 99 95.103 99 96.491 99 

1 

makespan 10.609 22 9.395 19 9.273 16 11.792 18 

flowtime 9.233 19 9.262 19 8.983 14 8.522 13 

idle time 87.279 99 87.937 99 94.187 99 96.277 99 

2 

makespan 5.294 13 5.157 11 2.269 6 2.260 5 

flowtime 4.079 8 2.973 6 2.778 4 2.778 4 

idle time 84.208 99 83.244 99 87.845 99 89.473 99 

Total 

makespan 11.720 24.75 9.666 19.75 12.494 21.25 12.834 20.25 

flowtime 11.195 23.75 9.652 19.75 13.414 21.5 11.512 18 

idle time 86.866 99 86.232 99 93.383 99 94.550 99 

For example, for makespan, problems with five jobs and five machines in the case of k = 2 the 

mean of approximation percentage to the optimal solution is 5.294, i.e. any solution is (on 

average) below 5.294% of the optimal makespan. Furthermore, 95% of solutions are below 



 

 1420 

13% of the optimal makespan. However, the mean for k = 0 is 17.372 and the upper bound for 

the 95% of solutions is 36%, showing in a clear way that the problems are easier while k 

increases. Means and 95% for makespan and flowtime are similar for all sizes n×m and all 

values of k. However, the performance of the idle time is different, since the means are around 

90% for all sizes and cases of k, and the 95% of solutions are at 99% of approximation to the 

optimal idle time.  

The hardness of the problems for idle time, regardless of the size, increases with k, following 

a different pattern than that of the other objective functions. However, a possible correlation 

between the results for makespan and flowtime could exist according to the similarities 

observed in the previous results. For both objectives the difficulty decreases with k and the 

problem size. 

3.3. Correlation makespan-flowtime 

We would like to determine the similarities between the distribution of the solutions for the 

problems with makespan and flowtime objectives. Correlations give us the statistical 

relationship between two variables. First, we represent the scatter diagrams for each value of 

k=0,0.5,1 and 2 in Figures 4, 5, 6 and 7 respectively. As it can be observed in the figures the 

correlation between both variables decreases ask increases. .  

 

 

Figure 4. Scatter diagram: case k=0 
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Figure 5. Scatter diagram: case k=0.5 

 

 

Figure 6. Scatter diagram: case k=1 
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Figure 7. Scatter diagram: case k=2 

The conclusions obtained by the scatter diagrams are confirmed by the values of Pearson‘s 

correlation coefficient, Kendall‘s Tau-b coefficient, and Spearman‘s Rho coefficient showed 

in Table 2. For all cases the results are significant at level 0.01. 

 

Table 2. Correlation coefficients 

Correlation coefficient k=0 k=0.5 k=1 k=2 

Pearson 0.981 0.980 0.905 0.627 

Kendall‟s Tau-b 0.894 0.916 0.897 0.755 

Spearman‟s Rho 0.965 0.967 0.950 0.790 

Pearson‘s correlation coefficient values are close to 1 for smallest values of k, indicating that 

there is a positive and linear relation between the frequency of approximation to the optimal 

values for makespan and flowtime objectives. Kendall‘s Tau-b and Spearman‘s Rho confirm 

the results with similar values if the normality assumption cannot be guaranteed. 

The information provided by these results shows that there is a relationship between the 

difficulty of the problems with makespan and flowtime objectives. The number of solutions in 

a given interval of approximation percentage to the optimal value for makespan is 

proportional to the number of solutions in the same interval of approximation percentage to 

the optimal value for flowtime. The levels of difficulty for both problems are very similar for 

small values of k, but the similarity decreases with k.  
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4. Conclusions 

In this work we analyse a type of machine availability constraint problems in the permutation 

flowshop environment, assuming that machines are not available at the beginning of the 

planning period. We obtain the distribution of the solutions for three objective functions: 

makespan, flowtime and idle time. The objective is to determine the difficulty degree of these 

problems. Makespan and flowtime objectives have been widely studied in the permutation 

flowshop literature in their classical versions, i.e. without availability constraints. However, to 

the best of our knowledge, only two references tackle the idle time. The analysis reveals that 

the idle time problem is very difficult, and reflects a relationship between the levels of 

difficulty for the makespan and flowtime cases. 

The analysis carried out in this work raises an important conclusion of practical application: 

Since for most real-life environments scheduling is performed on a periodical basis and this 

would naturally lead to the unavailability of machines at the starting of the scheduling period, 

this scheduling decision problem becomes easier than its ‗classical‘ (i.e. without machine 

unavailability) counterpart. Moreover, we have proved the relationship between the 

difficulties of the problems for the most studied objective functions: makespan and flowtime. 

The probability to find good solutions for problems with makespan as objective is almost the 

same that for problems with flowtime as objective. This relationship decreases with the size 

of the availability vector, being most difficult for those problems with makespan as objective. 
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