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Abstract 

The continuous improvement on quality of products and processes is a constant concern at organizations, as a 

response to growing competition and demands of the market. The implementation of statistical techniques 

adjusted to different situations is one way to achieve this goal. The application of traditional control charts 

requires, among other, that collected data are independent. However this is not always assured, reflecting a 

drastic increase of false alarms. This article presents a methodology for application of traditional univariate 

control charts, based on residuals, when data exhibit significant autocorrelation. Implementation took place in 

the painting process of an automotive company. 

Keywords: Statistic Process Control; Traditional Shewhart Control Charts; Autocorrelated 

Data; ARIMA Models  

1. Introduction 

The seek for process improvement in industrial organizations implies a better understanding 

of the nature, interpretation and modeling of variability. Statistical Process Control (SPC) is a 

useful tool in the detection of unusual ways of variation, allowing acting on the same. The 

control charts, a technique for real-time monitoring of the process, is an appropriate 

instrument for this purpose. 

The univariate control charts were introduced by Walter A. Shewhart, and are currently 

adopted and implemented in large-scale industrial processes, both discrete and continuous. 

One of the conditions for the application of these techniques is the existence of data 

independence, not always found in an industrial environment. If data correlation is 

disregarded, erroneous conclusions can be taken and derail the identification of statistical 

control and deviations. According to Gilbert et al. (1997), it is imperative to assess if the 

behavior of autocorrelated data is natural or indisputable to the process. To overcome such 

adversity, several approaches have been developed regarding the application of univariate 

control charts to data coming from autocorrelated processes. These approaches are divided 

into two distinct lines of investigation, a first approach which implies the determination of a 

mathematical model that best fit the autocorrelated data, and a second without of a 

mathematical model adjustment. 

The statistical control of processes with autocorrelated data has been approached by several 

researchers, such as Alwan and Roberts (1988), Montgomery and Mastrangelo (1991), Ross 

and Harris (1991), Maragah and Woodall (1992), Wardell et al. (1992), Vander Weil (1996), 

Zhang (1998), Wieringa (1999), Woodall (2000) and Jay et al. (2008), among others. 
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This paper aims the investigation of the performance and adequacy of univariate traditional 

control charts to data that exhibit autocorrelation and develops a methodology that allows the 

application of most appropriate techniques, using the process modeling through ARIMA 

models. The study was performed in a Portuguese automotive industry based on real data. 

2. Traditional SPC 

For a proper implementation of traditional Shewhart control charts, the sampling must be 

carried out at appropriate time intervals and sufficient times, so that the collected observations 

can show the process behavior and maximize the chance of variation between samples; 

samples should be homogeneous, and it is expected that the units have been produced 

consecutively and similarly; data, of the characteristic to be controlled, are considered 

independent and identically distributed according to a Normal distribution with mean  and 

variance 
2
; the distance between control limits and centre line of the several charts is 3 

standard deviations of the distribution of sampling statistic to be controlled, which 

corresponds to a significance level of 0.27%. 

There are several references, such as Quesenberry (1997) and Pereira and Requeijo (2008), 

which consider that the procedure for construction of control charts can be distinguished in, at 

least, two phases. A first phase (Phase I), where the interest lies in concluding if the data from 

the past come from a controlled process; a second phase (Phase II), where the control charts 

are used to monitor the process in real time. It is important to note that Phase II should only 

be initiated when Phase I of the process is under statistical control, and when the capability to 

produce in accordance with the required technical specification is verified. 

2.1. Phase I 

In this phase, named as preliminary phase or retrospective, the upper control limit (UCL), 

lower control limit (LCL), center line (CL) and the process parameters are estimated. These 

estimations are made based on collected data, and on the equations presented in Table 1. 

Table 1. Control Limits of Shewhart Control Charts for Phase I and estimators of process parameters 

Chart UCL CL LCL ˆ  ˆ  

X (individual observations) 23 dMRX   X  23 dMR X  X
 

 

X (mean) 

RAX 2  or 

SAX 3  
X  

RAX 2  or 

SAX 3  
X  

 

R (range) RD4  R  RD3   
2dR

 

S ( standard deviation) SB4  S  SB3   
4cS

 

MR (moving range) MRD4  MR  MRD3   
2dMR

 

The parameters (average and standard deviation) are estimated and subsequently the process 

capability is analyzed. Usually the capability indexes used for Normally distributed data are, 

6LIELSECp  and 
SpkIpkpk CCC  , min  , where 3LIEC

Ipk  and 

3LSEC
Spk . Usually the process is considered capable, when pC and pkC  are 

simultaneously higher than a reference value k (k = 1.33 for bilateral technical specifications 

and k = 1.25 for unilateral technical specifications). 

As mentioned, it is assumed that the data of the characteristic to be controlled are independent 

and normally distributed. To study the normal distribution, it is suggested the application of 
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the Kolmogorov-Smirnov test and to study the independence of data the application of 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF).  

After checking the stability of the process, if it does not possess the capability to produce at 

the technical specification required, corrective actions should be taken, leading to the 

collection of new data and repeat the Phase I of the SPC. 

2.2. Phase II 

After the verification of stability, parameters estimation, and process capability analysis, the 

next phase is the monitoring, a procedure commonly referred to as Phase II of SPC. The 

values of the center line and control limits are estimated based on process parameters 

estimation undertaken in Phase I (equations presented in Table 2), being similar to Phase I if 

no change of sample size exists. 

Table 2. Limits Shewhart Control Charts for Phase II 

Chart UCL CL LCL 

X (individual observations) 3   3  

X (mean) A   A  

R (range) 2D  2d  1D  

S (standard deviation) 6B  4c  5B  

MR (moving range) 2D  2d  1D  

At this stage it is assumed that the process is statistically controlled and the process 

parameters are known, so when a special cause is present the reason for its occurrence should 

be investigated and corrective measures taken to proceed to its elimination. 

3. SPC for autocorrelated data 

As previously mentioned, the use of Shewhart control charts is based on the assumption of 

statistical independence of the data. When this principle is violated, there are two distinct 

approaches; a first approach which implies the determination of a mathematical model that 

best fit the autocorrelated data, and a second without of a mathematical model adjustment.  

The first approach involves the study of available data and verifies the type of autocorrelation 

present in the process, followed by its modeling. In this article we will follow this approach, 

modeling the process using the ARIMA models. After the determination of residuals, or 

prediction errors, traditional control charts are applied to these variables, following the 

methodology proposed for the usual traditional SPC referred to in section 2. 

For the second approach, it is important to refer studies of Montgomery and Mastrangelo 

(1991) and Montgomery and Mastrangelo (1995). They propose the use of statistical EWMA 

(exponentially weighted moving average) for data from positively autocorrelated processes, 

as well as the MCEWMA chart ((EWMA Moving Center Line), which allows simultaneously 

checking the process control state and monitoring its behavior. Zhang (1998) presents the 

EWMAST chart (EWMA for stationary processes), which is nothing more than a change in the 

control limits of EWMA control chart through the autocorrelation function k.  

3.1. Shewhart charts for autocorrelated data 

Modeling based on ARIMA models, plays a filter role that allows the elimination of the 

existing process autocorrelation, making residuals independent and normally distributed. With 

these residuals, Shewhart control charts are designed for Phase I of SPC. Later, when the 

process is under statistical control, forecasts will be carried to subsequent periods and 
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calculated the prediction errors. These prediction errors represent the set of data to be 

monitored in Phase II of SPC. 

3.1.1. Shewhart charts for residuals control 

Like SPC for independent data, the techniques to be implemented in Phase I are the traditional 

Shewhart charts applied to residuals (determined with the process modeling). In Table 3 the 

equations that allow the estimation of control limits and the standard deviation of the 

residuals, , are presented.  

Table 3. Control Limits for Phase I of control charts based on residuals and estimators  

Chart UCL CL LCL ˆ  

e ( residuals) 
23 dMR  0 

23 dMR   

e  (mean) RA2  or SA3  0 RA2  or SA3   

R (range) RD4  R  RD3  
2dR  

S ( standard deviation) SB4  S  SB3  
4cS  

MR (moving range) MRD4  MR  MRD3  
2dMR  

The distribution of residuals has an expected zero mean value and variance 
2

. Based on the 

adjusted ARIMA model (AR (p), MA (q) or ARMA (p, q)), the location ( ) and dispersion ( ) 

process parameters are estimated. These models will be described later on this paper. It is 

assumed that the residuals, concerning to the characteristic under study, are independent and 

Normally distributed. It is suggested that verification of the Normality of the residuals is 

checked using the Kolmogorov-Smirnov test, and the independence by the ACF and PACF. 

When a special cause of variation is found, the point should not be eliminated but replaced by 

the expected value for that moment, setting back the ARIMA model, calculate the new 

residuals, and review the control charts. If there are many points out of control, it is necessary 

to investigate the cause(s) that led to this situation and proceed to the necessary corrective 

actions. During the checking of the stability of the process, if it does not reveal capability to 

produce according to technical specification, corrective actions should be taken. 

One of the objectives from Phase I of the SPC is to estimate properly the process parameters. 

When the quality characteristic X shows significant autocorrelation, this estimation is 

performed based on the parameters of the ARIMA model. The estimators of process mean and 

variance for the different models are given by the equations on Table 4. In the equations of 

Table 4 it is considered 
2
 the variance of residuals,  the parameter that determines the 

process average, j  the order parameter j of AR or ARMA model, j  the order parameter j 

MA or ARMA model, j  the correlation coefficient of lag j and j  auto-covariance lag j. The 

study of the process capability is performed using the traditional capability indexes of process 

pC  and pkC , previously defined. 
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Table 4. Estimators of mean and variance of process, on the quality characteristic X 

Model Mean Variance 

AR 
p

j

j

XE

1

1

 
p

j

jj

XVar

1

2

1

 

MA XE  1     0

0

22 θ,XVar
q

j

j  

ARMA 
p

j

j

XE

1

1

 
2

1

1

1 qXVar XqX

p

j

jj   

The monitoring of future data, for autocorrelated processes, is performed through the 

application of Shewhart control charts based on the prediction errors. The distribution of 

prediction errors presents an expected mean value of zero and a variance of 

1

1

22 1
j

jt TeVar . The prediction errors are given by TX̂TXTe TT  

and the limits of control charts of prediction errors are defined by expressions that are 

presented in Table 5, where TeVarep . 

Table 5. Control Limits for Phase II of control charts based on prediction errors 

Chart UCL CL LCL 

e ( residuals) ep3  0 ep3  

e  (mean) epA  0 epA  

R (range) epD2  epd2  epD1  

S ( standard deviation) epB6  epc4  epB5  

MR (moving range) epD2  epd2  epD1  

4. ARIMA Methodology of Box and Jenkins 

The aim of the methodology of Box and Jenkins is to determine and adjust the better ARIMA 

mathematical model to the collected process observations, in order to eliminate the existing 

autocorrelation and obtain a good prediction for each observation. To model a process by 

using this methodology, it is necessary to determine the ARIMA (p, d, q) model that best fits 

the data, comparing the estimated autocorrelation function (EACF) with the theoretical 

autocorrelation function (ACF) and the estimated partial autocorrelation function (EPACF) 

with the theoretical partial autocorrelation function (PACF). The modeling based on the 

ARIMA methodology follows certain steps, namely: identification, estimation, verification, 

prediction. In stationary processes, ACF and PACF of process AR(p), MA(q) and ARMA(p,q), 

have distinct characteristics. Table 6 gives the different succession series. 
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Table 6. Succession series 

Process ACF PACF 

AR(p) 
Exponential decrease from a certain lag 

order 
 

Presents significant peaks through lag (p) 

which indicate the order of the model
 

MA(q) 
Presents significant peaks through lag (q) 

which indicate the order of the model
  

Exponential decrease from a certain lag 

order 

ARMA(p,q) 
Exponentially decrease from a certain order lag, positively or negatively, or 

switching between them
 

Thereafter, the identified model parameters are estimated: the parameters  if the behavior of 

the process is autoregressive; the parameters  for moving average and variance of the error 
2 . When a satisfactory model is obtained, it is possible to predict the potential future values 

of the characteristic under study and then determine the forecasting errors. 

5. Study Case 

The presented study case includes the study of the quality characteristic "Total Thickness", 

and corresponds to the paint industry process of a Portuguese automotive manufacturer. This 

study aimed the process control, considered of great relevance for the company. The data 

collected during production showed the existence of significant autocorrelation, and two 

different approaches have been developed and their performance compared. The first 

approach consisted in the implementation of the methodology suggested by the authors, using 

the process modeling and application of Shewhart charts of residuals. The second approach 

was to apply the traditional charts directly to the collected data without the concern of 

studying a possible significant autocorrelation. 

5.1. Verification of data autocorrelation 

To study the data autocorrelation, 93 observations related to Total Thickness are collected. 

The verification of autocorrelation is performed using the "Statistica" software, calculating 

the EACF and EPACF for the 93 collected observations. The analysis of Figure 1 reveals the 

existence of significant autocorrelation of data, since the coefficient of correlation estimated 

for the lag 1 (0.595) does not belong to its confidence interval. Comparing the EACF and 

EPACF with the ACF and PACF described in Table 6, it was found that the process can be 

modeled using a standard AR(1). 

Autocorrelation Function

Total Thickness

(Standard errors are white-noise estimates)

 Conf. Limit

-1,0 -0,5 0,0 0,5 1,0
0

 15 -.163 .0940

 14 -.120 .0946

 13 -.082 .0952

 12 -.006 .0958

 11 +.015 .0963

 10 +.113 .0969

  9 +.120 .0975

  8 +.118 .0981

  7 +.127 .0987

  6 +.226 .0992

  5 +.302 .0998

  4 +.276 .1004

  3 +.321 .1009

  2 +.408 .1015

  1 +.595 .1020

Lag Corr. S.E.

0

93.48 .0000

90.45 .0000

88.84 .0000

88.09 .0000

88.09 .0000

88.06 .0000

86.71 .0000

85.19 .0000

83.75 .0000

82.08 .0000

76.89 .0000

67.76 .0000

60.20 .0000

50.11 .0000

33.96 .0000

  Q p

 

Partial Autocorrelation Function

Total Thickness

(Standard errors assume AR order of k-1)

 Conf. Limit

-1,0 -0,5 0,0 0,5 1,0
0

 15 -.094 .1037

 14 -.071 .1037

 13 -.123 .1037

 12 +.024 .1037

 11 -.128 .1037

 10 -.004 .1037

  9 +.032 .1037

  8 +.043 .1037

  7 -.077 .1037

  6 -.049 .1037

  5 +.136 .1037

  4 +.064 .1037

  3 +.076 .1037

  2 +.084 .1037

  1 +.595 .1037

Lag Corr. S.E.

 

Figure 1. FACE and FACPE for Total Thickness characteristic 

To estimate the parameters of the model AR(1), the software "Statistica" is used, obtaining the 

values 03882.ˆ  and 5947401 .ˆ . After the process modeling, the residuals independence 
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was checked with EACF and EPACF of residuals, presented in Figure 2. The independence of 

the residuals is found.  

Autocorrelation Function

Total Thickness: ARIMA (1,0,0) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit

-1,0 -0,5 0,0 0,5 1,0
0

 15 -.141 .0940

 14 -.026 .0946

 13 -.056 .0952

 12 +.048 .0958

 11 -.065 .0963

 10 +.111 .0969

  9 +.039 .0975

  8 +.019 .0981

  7 -.050 .0987

  6 +.078 .0992

  5 +.171 .0998

  4 +.005 .1004

  3 +.041 .1009

  2 +.012 .1015

  1 -.050 .1020

Lag Corr. S.E.

0

 9.12 .8713

 6.88 .9394

 6.80 .9122

 6.45 .8918

 6.20 .8596

 5.75 .8357

 4.44 .8802

 4.27 .8315

 4.24 .7520

 3.98 .6794

 3.36 .6453

  .42 .9807

  .42 .9363

  .25 .8819

  .24 .6266

  Q p

 

Partial Autocorrelation Function

Total Thickness: ARIMA (1,0,0) residuals;

(Standard errors assume AR order of k-1)

 Conf. Limit

-1,0 -0,5 0,0 0,5 1,0
0

 15 -.199 .1037

 14 -.049 .1037

 13 -.055 .1037

 12 +.045 .1037

 11 -.087 .1037

 10 +.091 .1037

  9 +.032 .1037

  8 -.003 .1037

  7 -.045 .1037

  6 +.097 .1037

  5 +.171 .1037

  4 +.009 .1037

  3 +.043 .1037

  2 +.010 .1037

  1 -.050 .1037

Lag Corr. S.E.

 

Figure 2. FACE and FACPE for residuals of Total Thickness characteristic 

5.2. SPC Application (Phase I) 

5.2.1. Control charts applied to residuals 

For the Shewhart control charts with autocorrelated data, designed to be applied when the 

observations violate the assumption of independence, the appropriate methodology is the 

following: with the 93 values used for the autocorrelation study, the control charts applied to 

residuals are drawn (Figure 3).  

During the construction of the charts, it was noticed that point nr.10 was a special cause of 

variation, since it exceeded the value of the UCL chart MR; the responsibility of this situation 

( MRLSCMR10 ) lays on the value 9X , reason why this value was replaced by its expected 

value ( 279277594740594740103882819 .....XX̂ ), the ARIMA model is 

then fitted and the revised charts of residuals are built (Figure 3). By examining this figure it 

is concluded that there are no special causes of variation and the process is under statistical 

control. It is presented in Table 7 the new values of model parameters. 

Table 7. Parameters of the model AR (1) for Total Thickness characteristic  

Model (1,0,0) MS Residual = 2.2486 

 Parameter 
Standard 

Deviation 
t0  p-value 

Confidence Interval 95% 

Lower Limit Upper Limit  

Constant 82.064 0.3694 222.2 0.000000 81.3301 82.7974 

1  0.58735 0.08532 6.88 0.000000 0.41787 0.75683 

The Normality of the residuals is checked using the Kolmogorov-Smirnov test ( 074470.d ; 

091908860 .N.Dcrítico  to %5 ; critDd ). It is presented in Figure 4 the histogram 

of 93 values with the Kolmogorov-Smirnov value, and the p-value of Chi-Square test. 

Checked the stability of the process, the parameters of Total Thickness characteristic are 

estimated, based on the model AR(1), which are presented in Table 8. 
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X and Moving R Chart; variable:  Residuals

X: -.72E-3 (-.72E-3); Sigma: 1.5473 (1.5473); n: 1,

10 20 30 40 50 60 70 80 90
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-4.6426

-.72E-3

4.6411

Moving R: 1.7459 (1.7459); Sigma: 1.3191 (1.3191); n: 1,

10 20 30 40 50 60 70 80 90
-1

0

1

2

3

4

5

6

7

0.0000

1.7459

5.7031

 

Figure 3. Control chart e-MR of revised residuals of the characteristic Total Thickness 

Variable: Residuals, Distribution: Normal

Kolmogorov-Smirnov d = 0,07447, p = n.s., Lilliefors p = n.s.

Chi-Square test = 3,97878, df = 3 (adjusted) , p = 0,26376

-4,2500 -3,1875 -2,1250 -1,0625 0,0000 1,0625 2,1250 3,1875 4,2500

Category (upper limits)

0

5

10

15

20

25

30

35

N
o

. 
o

f 
o

b
s
e

rv
a

ti
o

n
s

 

Figure 4. Check of the Normality of residuals of Total Thickness characteristic  

Table 8. Parameters for Thickness Total characteristic 

 Model Control Chart Process 

Parameter ˆ  
1

ˆ  1
ˆ  ˆ  ˆ  ˆ  

Estimate 82.064 0.58735 0.587 1.5473 82.064 1.9115 

After the parameters estimation it is possible to study the process capability. Once the 

specification is unilateral ( )LSL 70 , the study of capability is carried out only based on the 

pkC  ( 102.C pk ). It is possible to conclude that the process is able to produce at the required 

technical specification. 



 

 1573 

5.2.2. Control chart for data without modelation 

When the Shewhart control charts are constructed directly from the original autocorrelated 

data, the limits of traditional control, increases the chance of false alarms. This is illustrated in 

Figure 5, where it is presented the X-MR control charts for 93 data of Total Thickness 

characteristic. The analysis of these charts indicates erroneously the existence of many special 

causes of variation in the process (in X chart, the observations 3, 8, 9, 43, 44, of whom only in 

instant 9 a special cause of variation exists and the remainder are false alarms). 

X and Moving R Chart; variable:  Total Thickness
X: 82.038 (82.038); Sigma: 1.2472 (1.2472); n: 1,

10 20 30 40 50 60 70 80 90
74

76

78

80

82

84

86

88

78.297

82.038

85.780

Moving R: 1.4073 (1.4073); Sigma: 1.0632 (1.0632); n: 1,

10 20 30 40 50 60 70 80 90
-1

0

1

1

2

2

3

3

4

4

5

5

6

0.0000

1.4073

4.5970

 

Figure 5. Control chart X-MR of original data of the characteristic Total Thickness 

5.2.1. Comparison of the study with and without modelation 

Comparing both methods, and analyzing Figure 3 (residuals chart after modelation) and 

Figure 5 (charts applied to original data without modelation), it is quite severe not to consider 

the existing process autocorrelation. The indication given with the application of these 

statistical techniques (Figure 5) may incur in severe analysis errors which are dangers for the 

company, because it will impure resources to investigate some anomalies, when the process is 

actually stabilized, without special causes of variation. 

6. Conclusions 

The development of a statistical control methodology appropriated to the existence of 

significant process autocorrelation, reveals a crucial importance, since it avoids possible 

analysis errors. If the autocorrelation is not considered, some mistakes may occur, namely: 1) 

consider a stable process, when several special causes of variation are present, which 

corresponds to a non stable process; 2) consider a process out of statistical control, when it is 

actually stable (increase of false alarms); 3) incorrect estimate of the process parameters; 4) 

proceed to rough and/or incorrect analysis of the process capability; 5) loss of resources by a 

unnecessary intervention on the productive process, in order to solve problems which are not 

real (false alarms). 
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