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Abstract 

This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent 

setup times under both the idling and no-idling production cases with the objective to minimize the maximum 

completion time or makespan. We present a novel estimation of distribution algorithm (EDA). An estimation of 

probabilistic model is constructed to ensure the algorithm searching towards good regions by taking into 

account both job orders and similar blocks of jobs. A simple but effective local search is employed as well.  A 

comparative evaluation is carried out  and the results show that the proposed EDA is very effective in 

comparison. 
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1. Introduction 

The permutation flowshop scheduling problem is one of the most extensively studied 

combinatorial optimization problems, which has important applications among others, in 

manufacturing systems or assembly lines. In a flowshop, there are n jobs that have to be 

processed on m machines. All jobs visit machines in the same sequence. Each job is assumed 

to be indivisible, and thus, it cannot be transferred to the downstream machine until the whole 

operation on the preceding machine is finished. Nevertheless, this is not the case in many 

practical environments where a job or lot consists of many identical items. For example, in 

the fastener production process, jobs are batches of thousands of bolts, dowels, or rivets and 

the whole batch does not need to be finished in order to move on to the next machine. 

Another example comes from the electronics and semiconductor production environment 

where a job is comprised of thousands of identical electronic components and it is also not 

necessary to wait for all items to be completed before transporting to the downstream 

machine. In order to accelerate production, a job is allowed to overlap its operations between 

successive machines by splitting it into a number of smaller sub-lots and moving the 

completed portion of the sub-lots to downstream machines (Yoon and Ventura 2002). Job 

splitting into sub-lots is usually referred to as lot-streaming and was first studied by Reiter 

(1966). Generally, there are two different production situations when processing the sub-lots 

of a job, namely, the idling and no-idling cases. In the no-idling case, the job must be 

continuously processed without idling production interruption time (i.e., idle time) between 

any two adjacent sub-lots at the same machine. The idling case is more flexible as there might 

be idle time in between sub-lots of the same job. We center our study around makespan 

minimization of the production sequence. It is well known that in mostly all situations, lot-
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streaming results in lower makespan values. Furthermore, makespan in the idling case is 

smaller than that of the no-idling case given the same sub-lot sizes. The potential benefits of 

lot streaming, as mentioned by Truscott (1986) are: (a) reduction in production lead times 

(thus, leading to better due-date performance); (b) reduction in work-in-process inventory and 

associated costs; (c) reductions in interim storage and space requirements; (d) reduction in 

material handling system capacity requirements. Therefore, in recent years, lot streaming has 

received extensive attention and has been applied to flowshop scheduling problems by many 

authors, one example is the work of Tseng and Liao (2008). 

In general, setup times are one of the important factors to be considered in scheduling 

decisions, which involve operations such as cleaning, obtaining or adjusting tools, fixing or 

releasing parts to machines, and many others. Although they are not part of the job processing 

times, these operations have to be done prior to the processing of the jobs. Setup times are 

often job and machine sequence dependent and have been considered critical in may review 

papers, for example in the one of Allahverdi and Soroush (2008).  

This paper considers lot-streaming flowshop scheduling problems with sequence-dependent 

setup times and makespan criterion. Both the idle and no-idle variants are studied. Although 

the literature on lot-streaming flowshop is rich, the addition of sequence dependent setup 

times has not been studied before, to the best of our knowledge, in the literature. Without loss 

of generality, this problem is denoted as max,, CSTprmuLF sdnm . by using the notation of 

T‘Kindt and Billaut (2006), Chang and Chiu (2005), and Allavherdi et al (1999) Allahverdi et 

al (2008), where sdST  represents the sequence-dependent setup time; mF  and nL  stand for the 

n-job m-machine and lot-streaming flow shop configuration, respectively. Clearly, this setting, 

being a generalization of the traditional flowshop, is an NP-Hard problem. 

A fairly recent type of metaheuristic method is also studied along with the problem. We 

propose an Estimation of Distribution Algorithm (EDA) for this problem.  EDA was 

introduced by Muhlenbein and Paab (1996) and are a class of novel population-based 

evolutionary algorithms. Unlike the traditional evolutionary algorithms, the EDA samples 

new solutions from a probabilistic model which characterizes the distribution of promising 

solutions in the search space at each generation. EDA has recently attracted much attention in 

the field of evolutionary computation and has been recently applied to solve the flowshop 

scheduling problem in Jarboui et al, (2009) and Salhi et al, (2007). However, to the best of 

our knowledge, there is no published work dealing with the lot-streaming version of flowshop 

scheduling problem with EDA, let alone with the sequence-dependent setup times. 

The main motivation behind the selection of the EDA method as a solution technique is 

purely out of scientific curiosity as it is a type of method that has been seldom studied for 

flowshop settings, let along for the complex problem studied in this setting.  

Figure 1 shows, for clarification, the two cases studied in this work. Also, we show the 

resulting sequence if no lot-streaming is allowed. 
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Figure 1. Four job, three machine example under the idle (top) and no-idle (middle) lot-streaming cases. Also 

processing sequence without lot-streaming (bottom). Note the anticipatory sequence-dependent setup times. 

 

2. An estimation of distribution algorithm for the lot-streaming flowshop problem 

EDA is based on populations of solutions that evolve within the search process with a 

theoretical foundation in probability theory. Instead of using the conventional crossover and 

mutation operations of regular genetic algorithms, EDA adopts a probabilistic model learned 

from a population of parent individuals to reproduce offspring in the next generation. Starting 

from a population of PS randomly generated individuals, EDA estimates a probabilistic model 

from the genetic information of the selected Q individuals in the current generation, and 

represents it by conditional probability distributions for each decision variable. M offspring 

are then sampled in the search space according to the estimated probabilistic model. Finally, 

the next population is determined by replacing some individuals in the current generation with 

new generated offspring. The above steps are repeated until some stopping criterion is 

reached. The pseudo code for the basic EDA is briefly summarized as follows: 

Begin 

 Generate a population of PS individuals; 

 Calculate fitness for each individual; 

While termination criterion not met, do 

 Select Q individuals and estimate a probabilistic model; 

 Sample M offspring from the estimated probabilistic model; 

 Evaluate the M generated offspring; 

 Generate next population; 

End while; 

End. 

The previous EDA template has to be instantiated for the flowshop problem studied in this 

paper. We now briefly summarize how this instantiation has been carried since a full 

explanation is clearly not possible in the allowed limited space. 

Initialization of the population is carried out with the regular NEH heuristic and one 

improvement that considers setup times. It is worth noticing that we have developed a set of 

accelerations in order to keep the computational complexity of NEH to )( 2mnO  instead of the 

original )( 3mnO  which results in a very fast and effective EDA population initialization. 

The selection of the Q individuals for the probabilistic model estimation is simply carried out 

by selecting the Q best solutions from the population. The generation of the M offspring from 
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the Q best selected individuals is key in the EDA method. This operator is briefly explained 

below: 

Let ji ,  be the number of times of appearance of job j  before or in the position i . Let jj ,'  

represent the number of times that job j appears immediately after job 'j  in the Q selected 

individuals, which indicates the importance of the similar blocks of jobs not only in the same 

positions but in the different positions as well. Then, the probability of selection of the job j  

in the i-th position of the offspring is given by: 

1
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An example with four jobs is used to illustrate the presented probabilistic model. Suppose the 

selected individuals are }4,3,2,1{)1( , }1,4,3,2{)2(  and }3,2,4,1{)3( . jj ,'  is given 

below: 

011

200

030

101

44,' jj  

Then, we calculate the probability of selection of each job in }4,3,2,1{)1(  for the first 

position as follows: 67.0)12/(21,1 ; 33.0)12/(12,1 ; 0)12/(03,1 ;  

0)12/(04,1 . Suppose job 1 was selected for the first position and }4,3,2{)2( , then 

we calculate the probability of section of each job in }4,3,2{)2(  as follows: 

5.02/))101/(1)112/(2(2,2 ; 

125.02/))101/(0)112/(1(3,2 ; 375.02/))101/(1)112/(1(4,2 . 

With the previous probabilities, the following procedure is applied in order to construct 

complete solutions: 

    for ntoi 1  do 

        if ()rand  then 

            choose the first unscheduled job in the reference sequence. 

        else 

            select the job j  according to its probability ji , . 

        endif 

    endfor 

In the above procedure,  is a control parameter; ()rand  is a random function returning a 

random number sampled from a uniform distribution between 0 and 1. The reference 

sequence is randomly chosen from the selected individuals for estimating the probabilistic 

model. When ()rand , we randomly select  jobs from the unscheduled job set and the 
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job with the largest ji ,  is put into the 
thi  position of the new sequence ' . To generate 

M offspring, the above procedure is repeated M  times. 

Another aspect considered in the EDA is the population update for the next generation. To 

maintain the diversity of the population so as to avoid both cycling search and getting trapped 

in a local optimum, the population is updated in the following way (Ruiz et al 2006): 

Step 1: Set 1i . 

Step 2: If offspring i  is better than the worst individual of the population and there is no 

other identical individual existing, it replaces the worst individual and become a 

member of the population; otherwise, it is discarded. 

Step 3: Set 1ii , if Mi , go to step 1; otherwise stop the procedure 

We employ a local search based on the job insertion operator, which is very suitable for 

performing a fine local search and commonly used to produce a neighboring solution in the 

flow shop literature (Ruiz and Stutzle 2007, Vallada and Ruiz 2009). In the local search, a job 

is extracted from its original position in the sequence and reinserted in all the other 1n  

possible positions. If a better makespan value is found, the solution is replaced. We repeat the 

procedure until no improvements are found. According to the extraction order of jobs in the 

first step, the local search can be classified as referenced local search (Pan et al 2008) and 

local search without order (Ruiz and Stutzle 2007). Let },...,,{ 21 n
bbbb  denote the best 

job sequence found so far, and },...,,{ 21 n
 be a sequence that undergoes local search. 

Then the referenced local search is described as follows: 

Step 1: Set 1i  and counter 0Cnt . 

Step 2: Find job i
b

 in permutation  and record the position. 

Step 3: Take out i
b

 from its original position in . Then insert it in another different 

position of , and adjust the permutation accordingly by not changing the relative positions 

of the other jobs. Consider all the possible insertion positions and denote the best one among 

the obtained sequences . 

Step 4: If  is better than , then set  and 0Cnt ; otherwise set 1CntCnt . 

Step 5: If nCnt , let 
ni

nii
i

1

1
, and go to step 2; otherwise output the current 

permutation  and stop. 

For the local search without order, its procedure is given as follows: 

Step 1: Set counter 0Cnt . 

Step 2: Remove a job at random from its original position in  without repetition. Then insert 

it in another different position of , and adjust the permutation accordingly by not changing 

the relative positions of the other jobs. Consider all the possible insertion positions and denote 

the best one among the obtained sequences . 

Step 3: If  is better than , then let . 

Step 4: Let 1CntCnt . If nCnt , go to step 2. 
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Step 5: If the permutation  was improved in the above Steps 1 through 4, then go to Step 1; 

otherwise output the current permutation  and stop. 

We test both the referenced local search and local search without order in our study. The local 

search is applied to the generated offspring with a probability lsP , that is, the individual will 

undergo a local search if a random number uniformly generated in the range of [0,1] is less 

than lsP . In addition, the local search is also applied to the best individual after the 

initialization of the population. 

We also use a diversity control operator with a partial reinitialization of the population. In the 

restart mechanism, the 20% best individuals are kept from the current population and the 

remaining 80% are generated randomly. At the same time, to reduce the computation effort 

spent on computing the diversity value, the diversity value is calculated at least 100 

generations after the algorithm restarts. 

Outside this short paper is the detailed statistical calibration of the proposed EDA method. 

We now jump directly to the computational results. 

 

3. Computational results 

We compare the proposed EDA method against 9 state-of-the-art algorithms proposed in the 

literature for the lot-streaming flowshop, with adaptations to consider setup times. These 

algorithms include several variants of Tabu Search, Simulated Annealing, Hybrid Genetic 

Algorithms, Ant Colony Optimization and Particle Swarm Optimization. The tested methods 

are the seven presented methods of : Marimuthu et al. (2007, 2008, 2009), including a tabu 

search (TS), simulated annealing with insertion neighborhood (SAi), simulated annealing with 

swap neighborhood (SAs), hybrid genetic algorithm (HGA), ant colony optimization (ACO), 

threshold accepting with insertion neighborhood (TAi), and threshold accepting with swap 

neighborhood (TAs). Recently, Tseng and Liao (2008) developed a discrete particle swarm 

optimization (DPSO) for a problem similar to the one studied in this paper. We finally 

consider the most recent and high performing proposed method, the EDA algorithm of 

Jarboui et al. (2009), referred to as EDAJ. 

To test all methods (12 in total, since we include three versions of our proposed EDA, the all-

included EDA, the one without speed-ups EDAnS and the one without local search, EDAnL) 

we employ a benchmark of 360 instances with various parameters. Of particular relevance is 

the parameter l(j), which indicates in how many sub-lots a given job is allowed to split into. 

The maximum tested size is 200 jobs and 20 machines. To make a fair comparison, all the 

compared algorithms adopt the same maximum CPU time limit stopping criterion of 

)2/(mnt  milliseconds, where 100, 200, and 300, respectively. There are a total 

of five replicates for each algorithm and instance. Therefore, the total number of results is 

360·5·12·3=64,800. 

All the algorithms are coded in Visual C++ and run on a Pentium PIV 3.0 GHz PC with 512 

MB of memory. As a result, we can safely say that the computational evaluation setting is fair 

and comparable. We measure the average relative percentage deviation from the best known 

solution as a grand total of the 360 instances both for the idling and no-idling case (two 

separated experiments). Results are given in Tables 1 and 2. 
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Table 1. Average Percentage Deviation from best known solution for all tested methods under the no-idling 

case. Our proposed methods in bold. Three different stopping times 

 EDA EDAnS EDAnL EDAJ HGA ACO TS SAi SAs TAi TAs DPSO 

100  0.2794 1.1832 3.3391 4.3434 3.1241 2.1431 1.5151 3.1760 4.2812 4.3119 5.4874 2.7790 

200  0.2792 1.1224 3.3634 3.9596 3.0988 2.1132 1.3942 3.2879 4.3943 4.4250 5.6016 2.3587 

300  0.2622 1.0604 3.3398 3.7430 3.0661 2.0807 1.2556 3.3199 4.4267 4.4574 5.6343 2.1537 

 

Table 2. Average Percentage Deviation from best known solution for all tested methods under the idling case. 

Our proposed methods in bold. Three different stopping times 

 EDA EDAnS EDAnL EDAJ HGA ACO TS SAi SAs TAi TAs DPSO 

100  0.2791 1.5248 3.5485 4.9252 3.5023 2.3994 2.1309 3.1692 4.1075 4.3926 5.2916 4.0322 

200  0.2683 1.4056 3.5548 4.5313 3.3031 2.2995 1.7476 3.2812 4.2206 4.5061 5.4059 3.2562 

300  0.2668 1.3358 3.5691 4.2794 3.2532 2.2539 1.5795 3.3397 4.2795 4.5652 5.4655 2.9193 

 

As can be seen, our three proposed methods outperform all others in most situations, both in 

the idling, as well as in the no-idling case, and for all three termination criteria. More 

specifically, if we focus on 300 , the proposed EDA method, which contains the local 

search and the speed up, is just 0.2622% away from the best known optimum solution, on 

average for the 5 replicates and 360 instances and in the no-idling case. In comparison, the 

closes competitor is the TS which is 1.2556. This is 4.79 times less deviation. For the idling 

case, the differences widen, as EDA is 0.2668 and the closest competitor is again TS with 

1.5795, i.e., 5.92 times better. 

Our hypothesis is that the effective control of the population, with clone avoidance, 

convergence avoidance and the finely tuned local search is the key aspect to the performance 

of the three proposed approaches. 

 

4. Conclusions 

As we can see from the computational results, the proposed EDA algorithm yields 

significantly better results than all other tested methods. On average, EDA performs several 

times better than the closest competitor from the literature both in the idling and no-idling 

cases. This work shows an interesting evolutionary method tailored for a realistic lot-

streaming flowshop problem with the inclusion of sequence-dependent setup times. The finely 

tuned local search as well as the avoidance of clones and premature convergence in the 

population are key aspects to performance. As a conclusion, we can safely conclude that the 

proposed EDA is a new state-of-the-art algorithm for the lot-streaming flow shop scheduling 

problem with setup times and makespan criterion. 
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