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Abstract 

In this work we study the unrelated parallel machines problem with the objective of the minimization of the 

maximum completion time or makespan (Cmax). We propose some metaheuristics based on a size-reduction of 

the original assignment problem. The idea is to consider only a few of the best possible machine assignments for 

the jobs and not all of them. We test the proposed simple algorithms with a large benchmark of instances and 

compare them with current state-of-the-art methods. In most cases, the proposed size-reduction algorithms 

produce results that are statistically better by a significant margin. 

Keywords: unrelated parallel machines, makespan, heuristics, size-reduction. 

1. Introduction 

In the parallel machines scheduling problem there is a set N of n jobs that have to be 

processed on a set M of m parallel disposed machines. Every job must be processed by 

exactly one out of the m parallel machines. In the most general case, the parallel machines are 

unrelated, i.e., the processing time of job j, j  N depends on the machine i, i  M to which it 

is assigned to. As a result, the input data to the problem are the number of jobs n, the number 

of machines m and a processing time matrix pij . The problem consists on the assignment of 

jobs to machines and then on the scheduling of all the assigned jobs at each machine. One of 

the most commonly studied optimization criteria is the minimization of the maximum 

completion time or Cmax. Using the well known α/β/γ classification of Graham et. al. (1979), 

this problem is denoted as R//Cmax. This is a NP-Hard problem in the strong sense, since 

Garey and Johnson (1979) demonstrated that the simpler identical parallel machines case is 

already NP-Hard in the strong sense. Lenstra et. al. (1977) showed that the special case of two 

identical machines is also NP-Hard. Notice that with the Cmax objective, the R//Cmax is just a 

type of assignment problem since the sequence of the jobs assigned to any machine does not 

influence the value of the Cmax. To fully define this problem we have a well known Mixed 

Integer Linear Programming (MILP) assignment model, where the variables xij are one if job j  

is assigned to machine i  and zero otherwise. The model goes as follows: 
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Many papers about the R//Cmax problem have been published since the original work of 

McNaughton (1959). We can find several reviews like the ones of Cheng and Sin (1990) and 

Mokotoff (2001). A more recent and updated review is given by Fanjul-Peyro and Ruiz 

(2010) (available at the publications section of http://soa.iti.es) where it was shown that state-
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of-the-art results can be obtained by a simple iterated greedy metaheuristic method referred to 

as NVST-IG+ (denoted here as DIG for simplicity). The same authors also demonstrated that 

new versions of commercial solvers, and more specifically, IBM-ILOG CPLEX version 11.1 

(denoted here as CPLEX) are extremely competitive in finding optimum solutions just using 

the previous MILP model. In this short paper we propose size-reduction methods that take 

advantage of modern solvers in order to achieve even better results. 

2. Size-reduction algorithms 

We observed that CPLEX is very capable of solving some instances of considerable size (up 

to 1000 jobs and 50 machines). However, CPLEX needed large CPU times to solve big 

instances and large CPU times to prove the optimality of the solutions. A close analysis of the 

resulting sequences yielded an expected but rather surprising result: In almost all situations, a 

given job was assigned to either the fastest, second fastest or third fastest machine. In other 

words, among the n·m binary variables of the previous MILP model, jobs were assigned to the 

machines i1, i2 or i3 where i1=argmin j M pij; i2=argmin j M\i1 pij and i3=argmin j M\i1,i2 pij.  The 

resulting ―reduced‖ MILP model has n·3 binary variables. This means that if a 1000×50 

instance needs 50,000 binary variables, by just using the ―three fastest machines‖ for each job 

all we need is 3,000 variables, i.e., 16.67 times less variables. In order to test this proposal, we 

count how many jobs were not assigned to any of the three fastest machines i1, i2 or i3 in the 

instances used by  Fanjul-Peyro and Ruiz (2010) which employed a total of 1,400 instances 

divided into 7 groups with different distributions of the processing times pij with 200 

instances each, ranging from the smallest instances of 100 jobs and 10 machines to instances 

of up to 1000 jobs and 50 machines and for the reference solutions obtained with CPLEX 

with a 2 hours termination criterion on each instance. Further details about this benchmark 

will be given later. Results are given in Table 1. Each cell in Table 1 represents the 

percentage of jobs in the instance that were assigned to a machine not in  i1, i2 or i3  in the final 

mentioned reference solution. 

From Table 1 we notice that in the interval where the processing times are randomly 

uniformly distributed in the interval [1,100], i.e., U(1,100), only  1% of jobs are, on average, 

assigned to machines other than the three fastest. Excluding the last column, no interval 

exceeds 6%. The last column shows instances where processing times are machine correlated. 

In this case, jobs are not only assigned to fast machines. In machine correlated instances, there 

are machines which are faster for all jobs and therefore, in the reference solution not all jobs 

are expected to be assigned to the fastest machines as they quickly become overloaded. 

Of course, this size reduction comes at a high cost. First of all, optimality cannot be 

guaranteed and second, this straightforward size reduction does not perform that well in all 

cases. A less naïve approach is needed. We devised several size reduction methods. The first 

has been already explained and consists in selecting i1, i2 and i3 for every job. We call this the 

3J size-reduction method. We also use a selection within a machine calculating the theoretical 

average of jobs that should be assigned to each machine, i.e., a = n/m, and selecting two times 

(2·a) the smallest values of pij at each machine. This last method, used together with 3J, is 

denoted by 3J2M. 

Given the good results obtained with the DIG algorithm in Fanjul-Peyro  and Ruiz (2010), a 

direct idea is to use the pij values obtained after analyzing all the best solutions obtained by 

DIG in a number of iterations. This procedure is used together with 3J to form what we call 

the 3JD size-reduction method. 
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Table 1. Percentage of jobs at each instance that are not assigned to any of the three fastest machines i1, i2 or i3  in 

the reference solutions given by IBM-ILOG CPLEX 11.0 with a time limit of 2 hours. 

 

Once the original problem has been reduced by the usage of 3J, 3J2M, or 3JD, we simply run 

CPLEX until the optimum solution is found for the reduced problem. Obviously, it is not 

guaranteed that this optimum solution is also optimum for the original problem. Some further 

refinements can be implemented. If the solver reaches an optimal solution of a size-reduced 

problem before the allotted CPU time has elapsed, we can increase the number of pij to be 

considered (more binary xij variables) and re-launch the solver with this increased size-

reduced problem. An algorithm results from this procedure: start by selecting only the two 

smallest pij values for each job (i1 and  i2) and each time an optimal solution for the size-

reduced model is reached, we select another non previously selected smallest pij for each job 

and re-launch the solver. This is repeated until the termination criterion is met. We denote this 

algorithm as 2JDi. 

Another refinement comes from the fact that the solver, in most cases, uses a lot of time to 

close the search tree when proving optimality, without improving the solution. For this 

reason, instead of solving each size-reduced model to optimality, we solve each model with a 

maximum CPU time limit. When this limit is reached, we re-launch an increased size-reduced 

model with the same time limit starting from the previously best known solutions. After some 

calibrations, we fix this CPU time limit at 90 seconds and denote this algorithm as 2JDi(90). 

Current CPLEX versions run in parallel, using the available multiple cores of modern 

computers. We also develop some simple parallel versions of our algorithms. For example, 

the previous 2JDi(90) method is ―parallelized‖ by just running the first size-reduced and 

smallest problem in one core and the next increased sized-reduced model in the second core. 

Whenever a core finishes, the next pending increased size-reduced model is launched. We 

denote this algorithm as M-2JDi(90) (Multicore 2JDi(90)). We also generate a simple parallel 

version of the DIG algorithm by just running as many threads of the DIG, each one running in 

one core, and after the termination criterion is reached, the best solution found in any core is 

n m U(1,100)  U(10,100)   U(100,200)  U(100,120)  U(1000,1100) Jobcorre Machcorre

100 10 0.3 0.5 0.8 1.3 1.1 0.7 30.2

20 1.4 1.2 4.6 1.5 2.8 4.4 35.4

30 3.8 4.6 18 24.4 31.2 10.9 41.3

40 3.5 7.3 20.4 11.1 24.7 17.9 43.8

50 5.5 10.2 6.6 1.5 4.8 32.4 41.3

200 10 0.2 0.1 0.3 0.3 0.5 0.3 31.9

20 0.4 0.65 1.4 0.55 1.3 2.2 40.3

30 0.8 1.65 6.8 17.75 10.5 4.75 44.05

40 1.2 1.85 1.85 0.6 3.2 9.9 45.75

50 2.15 3.65 4.3 0.25 4.35 12.6 46.15

500 10 0.04 0 0.06 0.1 0.08 0.02 32.82

20 0.08 0.12 0.3 0.2 0.24 0.18 43.14

30 0.32 0.12 2.34 13.46 8.8 0.8 44.48

40 0.52 0.28 4.46 11 10.12 2.1 44.3

50 0.36 0.74 0.84 0.28 0.84 4.2 45.1

1000 10 0.02 0.01 0 0.02 0.02 0 29.66

20 0.04 0.02 0.19 0.13 0.12 0.06 37.65

30 0.05 0.09 0.74 1.78 12.57 0.25 39.84

40 0.13 0.09 0.29 0.16 0.17 0.86 46.67

50 0.2 0.11 0.45 0.1 0.22 1.33 45.14

1.05 1.66 3.74 4.32 5.88 5.29 40.45Average(%)
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retained. Lastly, CPLEX is checked both in single-core and multi-core, denoted as CPLEX 

and M-CPLEX respectively.  

3. Computational analysis 

We use a comprehensive set of benchmark instances for the R//Cmax proposed by Fanjul-Peyro  

and Ruiz (2010)  that are composed by 7 different intervals for the distribution of the pij 

processing times: U(1,100), U(10,100), U(100,200), U(100,120), U(1000,1100), correlated 

jobs where pij are determined by pij = bj + dij where bj and dij come from U(1,100) and 

U(1,20), respectively and correlated machines  with pij = ai + cij where ai and cij are uniformly 

distributed as U(1,100) and U(1,20), respectively. For each interval, we have the following 

combinations of n and m: n={100,200,500,1000}, m={10,20,30,40,50}. For each combination 

there are 10 replicates. There are 200 instances at each interval and 1,400 instances in total. 

All tests have been run in a cluster of 12 PC/AT computers with Intel Core 2 Duo E6600 

processors, running at 2.4GHz with 2 GB of RAM memory and under Windows XP SP3 

operating system. Notice that these computers have two cores. In order to compare the results 

of the algorithms we use as reference values those given by Fanjul-Peyro  and Ruiz (2010), 

which were obtained after solving each instance with the solver IBM-ILOG CPLEX 11.0 with 

a 2 hour maximum CPU time limit. The response variable is the relative percentage deviation 

from this reference solution as follows:  

100
)(

)()(
)(Deviation  Percentage Relative

*

max

*

maxmax

iC

iCiC
RPD  

Where C
*

max(i) is the aforementioned 2 hour CPLEX solution (many times optimal or with a 

very small gap) and Cmax(i) is the value obtained by a given algorithm and instance i. We also 

carry out ANOVA tests in order to guarantee that the observed differences in the average 

results are indeed statistically significant. The computational analysis is divided between the 

serial and parallel methods. 

3.1. Serial algorithms' results 

Our first test comprises the state-of-the-art algorithm DIG proposed by Fanjul-Peyro and Ruiz 

(2010) and the CPLEX version 11.1. We put along the first simple algorithms 3J and 3J2M. 

Table 2 shows the average results of the relative percentage deviation of all intervals together 

except for correlated machines. Recall that each cell contains the average of 1,400 results. 

The different stopping times are given in the rows. We do not include the correlated machines 

interval because as it was shown in Table 1 for this interval the 3J strategy was a poor way of 

size-reducing the problem. Therefore, these initial results should be seen as a first 

approximation.  

Table 2. Average Relative Percentage Deviations for all intervals except correlated machines 

for existing state-of-the-art and simple size-reduction algorithms 3J and 3J2M. 

Time (sec.) CPLEX  DIG 3J  3J2M

15 0.59 0.42 0.52  0.48 

30 0.41 0.34 0.43  0.37 

60 0.26 0.29 0.38  0.32 

120 0.15 0.22 0.34  0.28 

240 0.09 0.17 0.30  0.24 

300 0.07 0.16 0.28  0.22  

The first remarkable result is that CPLEX has seen its performance increased in a significant 

way since the results Fanjul-Peyro and Ruiz (2010). This is due to the new version 11.1 and 
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due to the faster computers used. In Fanjul-Peyro and Ruiz (2010) it was stressed that regular 

commercial solvers should not be overlooked since they steadily improve performance and 

this is a clear demonstration of this fact. A second remarkable result is that DIG is now 

competitive with CPLEX for very short CPU times of up to 30 seconds whereas in Fanjul-

Peyro and Ruiz (2010), DIG was shown to outperform CPLEX up to 60 seconds. The 

conclusion is that the new version of CPLEX makes a much more effective use of the faster 

computers. 

The first two simple proposed size-reduction algorithms are fairly competitive. For longer 

CPU times, CPLEX is expectedly better as CPLEX is solving the full problem, but note how 

for short CPU times, i.e., 15 and 30 seconds, 3J2M outperforms CPLEX. Now we test in more 

detail the more advanced processed methods, whose results are given in Table 3. 

The results of Table 3 show that, in average (right-most column), all of our proposed size-

reduction algorithms produce better results than the state-of-art methods for all different 

stopping criteria. This table even has negative values because the algorithms, in these cases, 

reach better results than the reference values (CPLEX 11.0 with 2 hours stopping time). 

However, we can notice that, in the interval U(1,100), CPLEX produces good results for 

larger stopping times, improving 3JD and even 2JDi but still not reaching the values obtained 

by 2JDi(90). In general, when the stopping time exceeds the calibration value of 2JDi(90), 

which is 90 seconds, we notice how the 2JDi(90) algorithm reaches better results than its 

simpler counterpart algorithm 2JDi where the solver part is not stopped. The results show that 

CPLEX has a poor result in correlated jobs but a good result in correlated machines, which it 

is the only case in which it can improve the results of our best algorithm for large CPU times. 

We can only say that this cannot be easily attributed due to the unknown structure of the 

specific algorithm that CPLEX is using for this assignment problem. In any case, CPLEX 

ends up being instance dependent and not robust as our proposed methods. 
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Table 3. Average Relative Percentage Deviations for serial algorithms CPLEX, DIG, 3JD, 2JDi and 2JDi(90) 

with different CPU time stopping criteria. Bold (italics) figures represent best (worst) results, respectively. 

Time Algorithms U(1,100) U(10,100) Jobcorre Machcorre U(100,200) U(100,120) U(1000,1100) Average

15 CPLEX 0.82 0.70 1.33  0.48 0.55 0.09 0.05 0.58

DIG 1.07 0.62 0.45 0.53  0.29  0.04  0.02  0.43

3JD 0.49 0.17 0.24  0.24 0.13  0.01  0.00  0.18

2JDi 0.44 0.17 0.24  0.22 0.13  0.01  0.00  0.17

2JDi(90) 0.44 0.17  0.24  0.22 0.13  0.01  0.00  0.17

30 CPLEX 0.56 0.47 0.93  0.30  0.37  0.06 0.04  0.39

DIG 0.93 0.49 0.35  0.50 0.25  0.04  0.01  0.36

3JD 0.37 0.08 0.13  0.23 0.11  0.01  0.00  0.13

2JDi 0.27 0.07 0.11  0.19 0.10  0.00  0.00  0.11

2JDi(90) 0.27 0.07  0.11  0.19 0.10  0.00  0.00  0.11

60 CPLEX 0.33 0.25 0.65  0.16 0.25  0.04 0.03  0.25

DIG 0.83 0.39 0.25  0.47 0.21  0.03  0.01  0.31

3JD 0.33 0.03 0.00  0.22 0.09  0.01  0.00  0.10

2JDi 0.19 0.01  -0.01  0.17 0.08  0.00  0.00  0.06

2JDi(90) 0.19 0.01  -0.01  0.17 0.08  0.00  0.00  0.06

120 CPLEX 0.17 0.10 0.45  0.09 0.13  0.03 0.02  0.14

DIG 0.75 0.24 0.14  0.42 0.17  0.02  0.00  0.25

3JD 0.31 0.01 -0.09  0.22 0.08  0.00  0.00  0.08

2JDi 0.15 -0.06 -0.11  0.16 0.06  0.00 0.00  0.03

2JDi(90) 0.06 -0.07  -0.10  0.15 0.05  0.00  0.00  0.01

240 CPLEX 0.08 0.05 0.33  0.04 0.06  0.02 0.01  0.09

DIG 0.63 0.17 0.06  0.37 0.14  0.02  0.00  0.20

3JD 0.26 -0.02 -0.13  0.22 0.07  0.00  0.00  0.06

2JDi 0.10 -0.09 -0.16  0.15 0.06  0.00 0.00  0.01

2JDi(90) -0.02 -0.14  -0.15  0.11 0.02  -0.01  -0.01  -0.03

300 CPLEX 0.06 0.02 0.29  0.03 0.04  0.01 0.01  0.07

DIG 0.63 0.14 0.03  0.36 0.13  0.02  0.00  0.19

3JD 0.24 -0.07 -0.17  0.21 0.03  0.00  0.00  0.03

2JDi 0.08 -0.11 -0.19  0.14 0.02  0.00 0.00  -0.01

2JDi(90) -0.03 -0.14  -0.17  0.10 0.00  -0.01  -0.01  -0.04  

So far we have just shown average results. We need to carry out an ANOVA statistical test in 

order to guarantee that the observed differences in the average results are indeed statistically 

significant. Figure 1 represents a means plot of all intervals at 120 seconds stopping time. 

This time is enough for CPLEX and for 2JDi(90) to reach good results. The means plot 

include Tukey HSD intervals with a 95% confidence level. Recall that overlapping intervals 

indicates that no statistically significant difference exists among the overlapped means. It can 

be seen CPLEX with this amount of time is significantly better than DIG. Our three proposed 

size-reduction algorithms are new state-of-the-art as can be seen, although there are some 

overlaps. 2JDi(90) is statistically better than 3JD but 2JDi is equivalent to the other two. 

However, this plot is for all intervals and instance sizes. Zoomed-in results (not shown due to 

reasons of space) show different performances depending on the cases. 
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Figure 1. Means plot and Tukey HSD intervals with a 95% confidence level for the tested serial algorithms. All 

instances and intervals with 120 seconds stopping time. 

3.2. Parallel algorithms' results 

Now we test our proposed M-2JDi(90) parallel version of the 2JDi(90) size-reduction 

algorithm, along with parallel version of DIG and CPLEX (M-DIG and M-CPLEX, 

respectively). Results are given in Table 4. All parallel methods clearly outperform their serial 

counterparts by a significant margin if we compare these results against those given in Table 

3. Recall that only two parallel cores are being used and probably better results are expected 

in four, six or even eight core settings. We see that, on average, our proposed parallel size-

reduction algorithm produce better results than all other algorithms. M-DIG gives better 

results than M-CPLEX only for short CPU times and the situation is reversed when times are 

larger. Similar to the serial case, our algorithm M-2JDi(90) produces the best results in all 

cases and times except for correlated machines, where M-CPLEX has better results only for 

larger CPU times. M-CPLEX also presents poor results for correlated jobs as in the serial 

case. 
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Table 4. Average Relative Percentage Deviations for parallel algorithms M-CPLEX, M-DIG and M-2JDi(90) 

with different CPU time stopping criteria. Bold (italics) figures represent best (worst) results, respectively. 

Time Algorithms U(1,100) U(10,100) Jobcorre Machcorre U(100,200) U(100,120) U(1000,1100) Average

15 M-CPLEX 0.66 0.63 1.33  0.37  0.40  0.07 0.04  0.50

M-DIG 0.91 0.51 0.35  0.48  0.26  0.03 0.02  0.37

M-2JDi(90) 0.42 0.10  0.18  0.20 0.11  0.00  0.00  0.15

30 M-CPLEX 0.41 0.33 0.99  0.20  0.29  0.05 0.03  0.33

M-DIG 0.86 0.41 0.24  0.45  0.21  0.03 0.01  0.32

M-2JDi(90) 0.18 -0.01  0.03  0.16 0.08  0.00  0.00  0.06

60 M-CPLEX 0.30 0.18 0.74  0.09  0.15  0.03 0.02  0.22

M-DIG 0.70 0.31 0.16  0.42  0.18  0.02 0.01  0.26

M-2JDi(90) 0.10 -0.07  -0.07  0.14 0.06  0.00  0.00 0.02

120 M-CPLEX 0.23 0.11 0.60  0.04  0.08  0.03 0.01  0.16

M-DIG 0.62 0.18 0.07  0.40  0.14  0.02 0.00  0.20

M-2JDi(90) -0.02 -0.14  -0.14  0.12 0.02  -0.01  -0.01  -0.03

240 M-CPLEX 0.16 0.04 0.47  0.02  0.04  0.01 0.00  0.11

M-DIG 0.57 0.11 -0.01  0.34  0.11  0.01  0.00  0.16

M-2JDi(90) -0.03 -0.16  -0.19  0.07 0.00  -0.01  -0.01  -0.05

300 M-CPLEX 0.08 -0.02 0.35  0.01  0.02  0.01 0.00  0.06

M-DIG 0.56 0.08 -0.04  0.34  0.10  0.01  -0.00  0.15

M-2JDi(90) -0.03 -0.17  -0.20  0.05 -0.01  -0.01  -0.01  -0.05  

Figure 2 shows, in this case, an interaction plot between CPU time stopping criterion and the 

parallel algorithms. Note that a two factor ANOVA was used in this case. This ANOVA plot 

allows to see how M-DIG is significantly better than M-CPLEX for just 15 seconds stopping 

time. For 30 seconds both methods are statistically equivalent and they remain so until 300 

seconds, where finally M-CPLEX improves the results of M-DIG. In all cases, our proposed 

size-reduction algorithm M-2JDi(90) is shown to statistically outperform the other two 

methods by a large margin. 
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Figure 2. Parallel methods: Means plot and Tukey HSD intervals with 95% confidence level for all instances 

and intervals and all tested stopping criteria. 

Finally, we present in Figure 3 a comparison between parallel and serial methods. Intervals 

are removed to improve readability of the plot. As we can see, parallel versions are most of 
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the time better than serial versions. As expected, for large CPU times, most algorithms start to 

converge and the advantages of parallel methods diminish. 
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Figure 3. Parallel vs. serial algorithms: Means plot for all instances and intervals in all tested stopping times. 

We can conclude that our algorithms show a very good performance in all situations, serial, 

parallel, with different stopping times and under a large and comprehensive benchmark. 

These results are remarkable, especially if we consider the inherent simplicity of the proposed 

methods. 

4. Conclusions 

In this paper we have shown simple size-reduction methods that when coupled with modern 

solvers result in state-of-the-art performance for the makespan minimization unrelated parallel 

machines scheduling problem in both scenarios, serial and parallel. The methods presented 

are very simple as they are just based on the idea of reducing the number of binary variables 

in the so common Mixed Integer Linear Programming (MILP) assignment model. 

Finally, we want comment that our best performing algorithm, M-2JDi(90), produces, in just 

15 seconds of CPU time, average relative percentage deviations with respect to the best 

known reference lower bounds reported by the solver of only 0.63% across the 1,400 

instances that reach sizes of up to 1000 jobs and 50 machines. With these results we are very 

close to effectively solving the R//Cmax problem to practical optimality for large sizes. 
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