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A modified approach based on ranking fuzzy 
numbers for fuzzy integer programming with 
equality constraints 
 

Díaz-Madroñero M1, Mula J, Jiménez M2 

Abstract This paper proposes a method for solving fuzzy integer programming 
problems where all the cost coefficients of the objective function and the right 
hand side terms of equality constraints are, in general, fuzzy numbers. We for-
mulate a modified fuzzy ranking method to rank the fuzzy objective values and 
to deal with the equality relation on constraints under integrity conditions. We 
build a fuzzy subset in the integer decision space whose membership function 
represents the balance between the feasibility degree of constraints and the sat-
isfaction degree of the goal. Finally, to illustrate our proposal, we solve a nu-
merical example of a transport planning problem. 
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1.1 Introduction  

Integer linear programming problems have an outstanding relevance in many 
fields, such as those related to production planning and transport planning prob-
lems when the product units are required to be defined with integer values. Fur-
thermore, production and transport planning decisions are used to be made un-
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der uncertainty (Mula et al. 2006b). According to Mula et al (2006a), it can be 
distinguished between randomness or uncertainty corresponding to an objective 
variability in the model parameters, or epistemic uncertainty or lack of 
knowledge of the parameter values. Epistemic uncertainty, which is considered 
in this paper, is concerned with ill-known parameters modelled by fuzzy inter-
vals in the setting of possibility theory (Zadeh 1978, Dubois and Prade 1988). 
Herrera and Verdegay (1995) present methods to solve fuzzy integer linear 
programming problems with either fuzzy constraints, or fuzzy numbers in the 
objective function or fuzzy numbers defining the set of constraints. These 
methods are based on the representation theorem and on fuzzy number ranking 
methods. However, the authors do not consider equality constraints. 
 This paper considers integer linear programming problems with equality 
constraints whose cost/profit coefficients of the objective function and right 
hand side terms of constraints are defined by fuzzy numbers but whose decision 
variables are crisp. In order to handle the relationship between the fuzzy left 
and the fuzzy right hand side of the constraints and to find the optimal value for 
the fuzzy objective function we propose a modified approach of the method of 
ranking fuzzy numbers by Jiménez (1996) and Jiménez et al. (2007) to solve in-
teger linear programming problems. This method has been previously applied 
but for linear programming problems (Peidro et al. 2010). With the aim of vali-
dating our proposal, we apply it to a fuzzy integer transportation problem 
(FITP) with equality constraints. The parameters of each transportation prob-
lem are unit costs (profits) and demand and supply (production, storage capaci-
ty) values. In practice, these parameters are fuzzy in nature. Chanas and Kutcha 
(1998) propose an alternative algorithm to solve the transportation problem 
with crisp costs, fuzzy supply and demand values and the integrity condition 
imposed on the solution. The rest of the paper is structured as follows. Section 
1.2 presents the FITP problem and the notation used. Section 1.3 develops the 
solution of the problem. Section 1.4 solves a FITP and compares the results of 
three methods: the proposal by Jiménez et al. (2007) for linear programming 
problems, dubbed as LFRN; the LFRN forcing the decision variables to be in-
teger, dubbed as IFRN; and our proposal, dubbed as MFRN, which is the modi-
fication proposed in this paper to introduce the integer decision variables in 
LFRN to solve the unfeasibility problems that arise with IFRN. Finally, Section 
1.5 provides the conclusions and further research. 

1.2 Formulation of the problem and notation 

The FITP considered in this paper can be described as follows. We assume a 
decision-maker who seeks to determine the right transportation planning of a 
homogeneous commodity from m sources to n destinations. Each destination is 
characterized by a forecasted demand which can be fulfilled with amounts of 
the commodity received from several sources, and each source has a total avail-
able supply capacity of the commodity to distribute to various destinations. The 
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total available supply capacity for each source, the total forecast demand for 
each destination, and transport costs from each source to each destination are 
considered fuzzy due to incomplete or unobtainable information over the plan-
ning horizon. The purpose of the FITP is to minimize total transportation costs 
by using fully the available supply capacity at each source, and meeting the 
demand exactly at each destination. The sets of indices, parameters and deci-
sion variables for the FITP model are defined in the nomenclature (see Table 
1). 

Table 1 Nomenclature (fuzzy parameters are shown with a tilde: ~ ) 
Sets of indices Decision variables 
i Set of sources (i=1,…,I) Xij Units transported from source i 

to destination j (units) j Set of destinations (j=1,…,J) 
Parameters 

ijc~  Transportation cost per unit delivered from 
source i to destination j (�/unit)  Total forecast demand of each 

destination j (units) 

iS
~

 Total available supply for each source i 
(units) 

The FITP is formulated as follows: 

Minimize ��
= =

�
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i

J

j
ijij Xcz
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Subject to 
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0�ijX , integer i� j�  (4) 
According to Liang (2008), in real-world transportation problems, con-

straints (2) and (3) are fuzzy in nature. Constraint (2) corresponds to the total 
available supply for each source i and constraint (3) is related to the total fore-
cast demand for each destination j. The total available supply in constraint (2) 
for each source is commonly uncertain because available resources, worker 
skills, public policy and other factors are uncertain over the planning horizon. 
Additionally, the forecast demand in constraint (3) for each destination can 
never be determined precisely because the demand and supply in a dynamic 
market are uncertain. Moreover, transport costs are considered uncertain data 
and are modeled by fuzzy trapezoidal numbers ijc

~ = (cij1, cij2, cij3, cij4), as well 

as, available supply iS
~

= (Si1, Si2, Si3, Si4) and forecasted demand jD
~  = (Dj1, Dj2, 

Dj3, Dj4). 

jD
~
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1.3 Solution of the problem 

1.3.1 Transformation of the fuzzy mixed-integer linear programming 
model into an equivalent crisp model according to Jiménez et al. (2007) 

In this section, to address the fuzzy costs and right-hand side parameters of the 
FITP model, and to transform it into an equivalent auxiliary crisp integer linear 
programming model, we consider firstly the approach by Jiménez et al. (2007). 
Let us consider the following linear programming problem with fuzzy parame-
ters:  

}0,,...,1,
~~|{

~~  s.a.

~Min 

�=��=�

=

xmibxaRx)b,AN(x

xcz

ii
n

t
                           (5) 

where t
nmxnijn bbbbaAcccc )~,...,~,~(~,]~[~),~,...,~,~(~

2121 === represent, respectively, 
fuzzy parameters involved in the objective function and constraints. The possi-
bility distribution of fuzzy parameters is assumed to be characterized by fuzzy 
numbers. ),...,,( 21 nxxxx =  is the crisp decision vector. We use a fuzzy relation-
ship to compare fuzzy numbers that is computationally efficient to solve linear 
problems because it preserves its linearity (Jiménez, 1996). Thus, by applying 
the approach described by Jiménez et al. (2007) the problem (5) is transformed 
into the crisp equivalent parametric linear programming problem defined in (6). 

]1,0[,01)1(])1[(  s.a.

)~(Min 

1212 ��=�+�+ ����� x,...,m,i,EExEE-

xcEV
iiii bbaa

 (6) 

where � represents the degree that, at least, all the constraints are fulfilled; 
that is, � is the feasibility degree of a decision x. The expected value of a fuzzy 
number, noted )~(cEV , is the half point of its expected interval (Heilpern, 
1992): 

2
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cc EE
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+
=                                                                                      (7) 

and if the fuzzy number c~ is trapezoidal, its expected interval is easily calcu-
lated as follows: 
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As (5) is considered an equality type constraint, this could be transformed in-
to two equivalent crisp constraints: 
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Consequently by applying this approach to the previously defined FITP model, 
and by considering trapezoidal fuzzy numbers for the uncertain parameters, we 
obtain an auxiliary crisp integer linear programming model as follows: 

Minimize ��
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1.3.2 A modified approach based on fuzzy ranking numbers for fuzzy 
integer programming models with equality constraints 

The previous approach is efficiently working for fuzzy linear programming 
problems (Peidro et al. 2010) but for fuzzy integer linear programming prob-
lems, where the integrity condition is imposed on the solution, there is a prob-
lem of unfeasibility of the solution. It happens because the right hand side of 
constraints (13) and (14) are equal fractional values, while the left hand side of 
these constraints, Xij, must be integer values, what could be infeasible for cer-
tain values of �. To face with it, we propose to substitute the right hand side 
terms of constraints (13) and (14) for the corresponding most nearby integer 
values. Therefore, we have to add new auxiliary decision variables to ensure 
that the right hand side of constraints (13) and (14) can be transformed into in-
teger and fractional values with the aim of getting the most nearby integer val-
ues. The model comprises of constraints (10)-(15) is modified as follows. 
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, integer,   (39) 
Where the right-hand side coefficients of constraints (11) to (14) are repre-

sented by a sum of an integer variable and a real variable. For instance, the 

right-side hand coefficient of constraint (11) is equivalent to the sum of INT
iS1

and DEC
iS1 . The same to constraint (12) and INT

iS2 and DEC
iS2 and consequent-

ly with constraints (13-14) and INT
jD1 , DEC

jD1 , INT
jD2 , DEC

jD2 . Then, right-
hand side coefficients of constraints (11-14) are replaced by these integer vari-
ables in constraints (19-20) and (23-24). Hence, DEC

iS1 , DEC
iS2 , DEC

jD1 ,
DEC
jD2  represent the deviation from original values in constraints (11-14) to 

integer values in constraints (19-20) and (23-24) and will be lower than 1. The-
se deviations are expressed in a linear form of absolute value in constraints (25-
28) and (29-32), respectively, by incorporating the variables ABS

iS1 , ABS
iS2 ,

ABS
jD1 , ABS

jD2 . Finally, the total sum of the absolute value of these deviations 
is added to the objective function to be minimized.  

1.4 Numerical example 

The proposed approach based on ranking fuzzy numbers will be illustrated at 
the following numerical example. We consider a network consisting of 3 
sources and 3 destinations. Transport costs from sources to destinations, availa-
ble supply and forecast demand are shown in Table 2, Table 3 and Table 4 as 
trapezoidal fuzzy numbers.  

Table 2 Fuzzy transport costs from sources to destinations (in euros) 
 Destination 1 Destination 2 Destination 3 

Source 1 (1, 1.25, 1.5, 2) (2, 2.5, 3, 3.25) (3, 3.5, 3.75, 4.25) 
Source 2 (2, 2.25, 2.75, 3) (1, 1.25, 1.75, 2) (2, 2.75, 3.5, 3.75) 
Source 3 (3, 3.25, 3.75, 4) (2, 2.25, 2.5, 2.75) (1, 1.25, 1.75, 2) 

Table 3 Fuzzy values of available supply 
at sources 

 Available supply 
Source 1 (2, 4, 6, 8) 
Source 2 (3, 4, 7, 10) 
Source 3 (4, 5, 7, 10) 

Table 4 Fuzzy values of forecast demand 
at destinations 

 Forescast demand 
Destination 1 (5, 6, 9, 10) 
Destination 2 (2, 4, 6, 7) 
Destination 3 (2, 5, 8, 10) 

 
The model has been implemented with the MPL 4.2 modelling language 

(2010). Resolution has been carried out with the optimisation solver Gurobi 4.6.1. 
Finally, a Microsoft Access 2010 database manages the input and output data of 
the model. Table 5 compares the expected values of total transportation costs, for 
several values of �, obtained from MFRN, LFRN and IFRN. The lowest expected 
values of total transportation costs are obtained by our modified approach, MRFN. 
The IFRN method obtains infeasible solutions for three values of �. 

0�ijX [ ]1,0�� ji��
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Table 5 Expected values of total transportation cost (in euros) 
� MRFN LFRN IFRN 
0 17.69 19.69 21.69 

0.1 17.69 20.62 22.13 
0.2 18.75 21.55 22.13 
0.3 21.69 22.48 26.13 
0.4 21.69 23.41 26.13 
0.5 22.13 24.34 26.13 
0.6 23.19 25.27 28.69 
0.7 23.19 26.32 29.56 
0.8 26.13 27.51 infeasible 
0.9 27.19 28.92 infeasible 
1 27.19 27.66 infeasible 

1.5 Conclusions  

We have identified the unfeasibility of the solution for certain values of �, the fea-
sibility degree of a decision x, when applying the approach based on ranking fuzzy 
numbers by Jiménez (1996) and Jiménez et al. (2007) for solving fuzzy integer 
linear programming problems with equality constraints. With the aim to cope with 
it, we have modified this approach, which has provided lower transportation costs 
for the FITP. A forthcoming work is applying this new modified approach for 
solving fuzzy goal programming models for material requirement planning under 
uncertainty and integrity conditions. 
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